Loading...
Search for: transimpedance-amplifier
0.008 seconds

    Low-noise differential transimpedance amplifier structure based on capacitor cross-coupled gm-boosting scheme

    , Article Microelectronics Journal ; Volume 39, Issue 12 , 2008 , Pages 1843-1851 ; 00262692 (ISSN) Jalali, M ; Nabavi, A ; Moravvej Farshi, M. K ; Fotowat Ahmady, A ; Sharif University of Technology
    2008
    Abstract
    This paper presents a capacitor cross-coupled gm-boosting scheme for differential implementation of common-gate transimpedance amplifier (CG-TIA). A differential transimpedance amplifiers (DTIA) is designed by this scheme using two modified floating-biased CG stage with improved low corner frequency. Despite conventional methods for single-ended to differential conversion that increase the power and the noise for the same gain, the new DTIA gives a higher gain and hence reduces the input-referred noise power. Design of the DTIA circuit using 0.13 μm CMOS technology illustrates near 1.7 dB improvement in the circuit sensitivity and 5.2 dB enhancement in transimpedance gain compared to its... 

    A low-area, 0.18μm CMOS, 10Gb/s optical receiver analog front end

    , Article 2007 IEEE International Symposium on Circuits and Systems, ISCAS 2007, New Orleans, LA, 27 May 2007 through 30 May 2007 ; 2007 , Pages 3904-3907 ; 02714310 (ISSN) Maadani, M ; Atarodi, M ; Sharif University of Technology
    2007
    Abstract
    A fully integrated, low-cost (area), low-power, high-gain, differential Optical Receiver Analog Front-End (AFE), including Transimpedance Amplifier (TIA), Limiting Amplifier (LA), DC-Offset Cancellation Feedback and Output-Buffer is designed in TSMC 0.18μm CMOS Technology. The optimized TIA has a Regulated Cascode (RGC) topology, with 5.9mW power-dissipation, 48 dBΩ gain, 8.46GHz bandwidth. The Proposed Limiting Amplifier (LA) has an Inductor-Less topology, with 41.9dB gain, 91.1mW power consumption (including Output Buffer), output swing of 0.4VP-P, and bandwidth of 7.88GHz (Output-Buffer applied), using Built-in Active Inductors and Negative Miller Capacitance to broaden the bandwidth. The... 

    A novel design methodology for low-noise and high-gain transimpedance amplifiers

    , Article Proceedings of the 2014 Argentine School of Micro-Nanoelectronics, Technology and Applications, EAMTA 2014 ; 2014 , pp. 77-82 ; ISBN: 9789871907861 Shahdoost, S ; Medi, A ; Bozorgzadeh, B ; Saniei, N ; Sharif University of Technology
    Abstract
    This paper reports on design and measurement results of a state of the art low-noise and high-gain transimpedance amplifier (TIA) implemented in 0.18 μm TSMC CMOS technology. Thorough design methodology for high gain and low power TIA design for 2.5 Gb/s optical communication circuits family is presented. A noiseless capacitive feedback is proposed and implemented as a noise efficient feedback network for TIA circuits. Besides, analytical noise calculations in this family of TIA circuits are presented and optimum noise criteria are derived. The saturation and instability problem of TIA circuits resulted from DC dark current of the input photodiodes (PDs) is addressed and a circuit level... 

    A 1.93 pA/√Hz transimpedance amplifier for 2.5 Gb/s optical communications

    , Article Proceedings - IEEE International Symposium on Circuits and Systems ; 2011 , Pages 2889-2892 ; 02714310 (ISSN) ; 9781424494736 (ISBN) Shahdoost, S ; Medi, A ; Saniei, N ; Sharif University of Technology
    Abstract
    A state-of-the-art low-noise transimpedance amplifier (TIA) for 2.5 Gb/s family is presented using IBM 0.13-m CMOS technology. This TIA would be a part of a homodyne detector in a quantum key distribution (QKD) system. In this work a thorough design methodology based on a novel analytical noise optimization is presented. Also a unique method for eliminating the DC current of the input photodiodes (PDs) is proposed. The post-layout simulation results show bandwidth of 52 kHz to 1.9 GHz, average input referred noise of 1.93 pA/√Hz, and transimpedance gain of 80 db while dissipating 12 mW from a 1.5 V power supply, including the output buffer