Loading...
Search for: transition-metal-compounds
0.013 seconds

    Higher-order statistical steganalysis of random LSB steganography

    , Article 7th IEEE/ACS International Conference on Computer Systems and Applications, AICCSA-2009, Rabat, 10 May 2009 through 13 May 2009 ; 2009 , Pages 629-632 ; 9781424438068 (ISBN) Khosravirad, S. R ; Eghlidos, T ; Ghaemmaghami, S ; Sharif University of Technology
    2009
    Abstract
    This paper presents a new scheme for steganalysis of random LSB embedding, capable of applying to any kind of digital signal in both spatial and transform domains. The proposed scheme is based on defining a space whose elements relate to higher-order statistical properties of the signal and looking for special subsets, which we call Closure of Sets (CoS) in this space. We use this scheme for steganalysis of the LSB steganography in grayscale images, employing a vector of five accurate and monotone features. Experimental results show significantly higher accuracy of the proposed scheme, as compared to those reported in the literature, especially in low embedding rates applications. © 2009... 

    Closure of sets: A statistically hypersensitive system for steganalysis of least significant bit embedding

    , Article IET Signal Processing ; Volume 5, Issue 4 , July , 2011 , Pages 379-389 ; 17519675 (ISSN) Khosravirad, S. R ; Eghlidos, T ; Ghaemmaghami, S ; Sharif University of Technology
    2011
    Abstract
    This study introduces a new scheme for steganalysis of the least significant bit (LSB) embedding, based on the idea of closure of sets (CoS), which is independent of the type of cover signal, applicable to both spatial and transform domains. The CoS is referred to as some special subsets that could be found in a common space whose elements relate to higher-order statistical properties of the signal. The proposed scheme is used for steganalysis of the LSB steganography of greyscale TIFF and JPEG images and audio signals, employing a set of accurate and monotone features that are extracted based on the CoS definition. It is shown that significant improvement to the detection accuracy in... 

    Advanced binder-free electrode based on core–shell nanostructures of mesoporous Co3V2O8-Ni3V2O8 thin layers@porous carbon nanofibers for high-performance and flexible all-solid-state supercapacitors

    , Article Chemical Engineering Journal ; Volume 341 , 2018 , Pages 10-26 ; 13858947 (ISSN) Hosseini, H ; Shahrokhian, S ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    The development of thin layer structures on flexible current collectors has become as an effective strategy for preparing advanced portable and wearable power sources. Herein, a flexible and efficient electrode was fabricated based on electrospun porous carbon nanofibers (PCNFs) substrate with elaborately designed thin layer Co3V2O8-Ni3V2O8 core–shell nanostructures (Co3V2O8-Ni3V2O8 TLs@PCNFs). The resulting free-standing Co3V2O8-Ni3V2O8 TLs@PCNFs composite was used directly as a flexible electrode in three electrode system for supercapacitor studies without the need for utilization of either binder or metal-based current collector. The unique thin layer structure of Co3V2O8-Ni3V2O8... 

    A general two-step chemical vapor deposition procedure to synthesis highly crystalline transition metal dichalcogenides: a case study of MoS2

    , Article Materials Research Bulletin ; Volume 76 , 2016 , Pages 473-478 ; 00255408 (ISSN) Shidpour, R ; Vosoughi, M ; Maghsoudi, H ; Simchi, A ; Sharif University of Technology
    Abstract
    A green and simple synthesis method based on a two-step chemical vapor deposition approach has been developed to synthesize transition metal dichalcogenides flakes. With non-toxic precursor such as transition metal oxides and elemental sulfur, large-area, strong photoluminescent and uniform MoS2 nanoflakes were produced at a relatively low growth temperature (650 °C). Controlling the layer number and morphology was achieved only by precursor concentration without any oxide impurity revealed by SEM, PL and Raman spectroscopy. This method can be used to make wide range of metal chalcogenides such as ZnS, SnS2, PtS2 and PdS2  

    On the catalysis capability of transition metal oxide nanoparticles in upgrading of heavy petroleum residue by supercritical water

    , Article Journal of Supercritical Fluids ; Volume 126 , 2017 , Pages 14-24 ; 08968446 (ISSN) Kosari, M ; Golmohammadi, M ; Ahmadi, S. J ; Towfighi, J ; Heidari Chenari, A ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Vacuum residue cracking has been successfully conducted under supercritical water condition in presence of various metal oxide nanocalysts, namely NiO, CuO, ZnO, Co2O3, and Cr2O3 synthesized at supercritical water. The cracking experiments were carried out at 450 °C. Three species of cracking: maltene, asphaltene, and coke were then weighed and their corresponding speciation was defined. Gas chromatography-mass spectrometry (GC–MS), nuclear magnetic resonance spectroscopy (NMR), thermogravimetric analysis (TGA), and elemental analysis (CHNS) tests were utilized to prove the performance of upgrading reactions. It was revealed that NiO showed the best performance among other catalyst, in which... 

    Investigating the different conditions on solution processed MoOx thin film in long lifetime fluorescent polymer light emitting diodes

    , Article Materials Chemistry and Physics ; Volume 204 , 2018 , Pages 262-268 ; 02540584 (ISSN) Alehdaghi, H ; Marandi, M ; Irajizad, A ; Taghavinia, N ; Jang, J ; Zare, H ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Transition metal oxides are being more frequently used as hole injection layer (HIL) in organic light emitting diodes (OLEDs), in place of polymer HILs such as PEDOT:PSS. The very thin films of the metal oxide HILs are usually deposited using vapor deposition, in order to create uniform films. Here, we report OLEDs fabricated using solution processed MoOx films as the HIL and super yellow as the emissive layer. The performance of the devices is comparable to PEDOT:PSS based devices, while the stability tests show the lifetime of MoOx-based devices is 4 × 106 h, about 40 times longer than PEDOT:PSS devices, at typical working condition. X-ray photoelectron spectroscopy (XPS) indicates both... 

    Transition metal ions-doped polyaniline/graphene oxide nanostructure as high performance electrode for supercapacitor applications

    , Article Journal of Solid State Electrochemistry ; 2017 , Pages 1-14 ; 14328488 (ISSN) Asen, P ; Shahrokhian, S ; Zad, A. I ; Sharif University of Technology
    Abstract
    Polyaniline/graphene oxide (PANI/GO) co-doped with Zn2+ and Fe3+ was synthesized via a simple and low cost one-step chronoamperometry method on stainless steel (SS) as the substrate. The Fe3+-Zn2+-PANI/GO nanocomposite is characterized using X-ray diffraction as well as Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, and field emission scanning electron microscopy. Also, cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy are used to study the electrochemical performance of the as-prepared electrode materials. Significantly, the Fe3+-Zn2+-PANI/GO nanocomposite exhibits a specific... 

    Transition metal ions-doped polyaniline/graphene oxide nanostructure as high performance electrode for supercapacitor applications

    , Article Journal of Solid State Electrochemistry ; Volume 22, Issue 4 , 2018 , Pages 983-996 ; 14328488 (ISSN) Asen, P ; Shahrokhian, S ; Iraji Zad, A ; Sharif University of Technology
    Springer New York LLC  2018
    Abstract
    Polyaniline/graphene oxide (PANI/GO) co-doped with Zn2+ and Fe3+ was synthesized via a simple and low cost one-step chronoamperometry method on stainless steel (SS) as the substrate. The Fe3+-Zn2+-PANI/GO nanocomposite is characterized using X-ray diffraction as well as Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, and field emission scanning electron microscopy. Also, cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy are used to study the electrochemical performance of the as-prepared electrode materials. Significantly, the Fe3+-Zn2+-PANI/GO nanocomposite exhibits a specific...