Loading...
Search for: transmission-electron-microscope
0.007 seconds
Total 23 records

    Synthesis and Analysis of Nanoparticles by Electrical Arc Discharge in Liquid Nitrogen

    , M.Sc. Thesis Sharif University of Technology gholami, Zainab (Author) ; Irajizad, Azam (Supervisor) ; Ahadian, Mohammad Mahdi (Supervisor)
    Abstract
    Electrical arc discharge in ambient air, vacuum, reactive gas and other environment is an appropriate method for synthesis of different nanostructures. This method can provide stable and ultra pure nanostructures with diverse applications. In this research we focus on synthesis and analysis of titanium nitride nanoparticles in liquid nitrogen(lack of oxygen)by Electrical arc discharge . At the beginning a reactor for the electrical arc discharge process designed and implemented. Titanium nanoparticles have synthesis by this method analyzed. Several characterization techniques such as X-ray diffraction (XRD), dynamic light scattering (DLS), X-ray photo electron spectroscopy (XPS), scanning... 

    Study of Microstructural Evolution of AEREX 350 Alloy During High Temperature Ttensile Testing

    , M.Sc. Thesis Sharif University of Technology Keshishi, Armen (Author) ; Asgari, Sirous (Supervisor)
    Abstract
    In this study, samples of wrought nickel-cobalt superalloy AEREX350 underwent hot tensile testing at temperatures ranging from 500 to in the solution-treated state, with subsequent investigation into their mechanical properties and microstructural changes. Anomalous yield strength behavior was observed in this alloy, characterized by an initial decrease in yield stress with rising temperature, followed by an increase and subsequent decrease. Similarly, the ultimate tensile strength exhibited a similar trend to the yield stress. Conversely, ductility parameters demonstrated an inverse relationship with alloy strength. Notably, the alloy displayed a pronounced work-hardening rate at 800 °C.... 

    Investigation on the Effect of Concentration Ratio of Iron Cations on the Formation of Carbon Nanotubes Synthezied via arc Discharge in Aqueous Solution

    , M.Sc. Thesis Sharif University of Technology Gheytani, Saman (Author) ; Simchi, Abdolreza (Supervisor) ; Khomamizadeh, Farzad (Supervisor)
    Abstract
    In this work, multi-walled carbon nanotubes (MWCNTs) and single-walled carbon nanotubes (SWCNTs) were synthesized in an aqueous solution of iron chloride and solfate via arc discharge. Thermogravimetric (TG) analysis showed that the multi layer structures including carbon nanotubes (CNTs) and multi-shell graphite particles were formed when DI-water was used. SWCNTs were synthezied in the presence of the iron ions. The effect of [Fe3+]/[Fe2+] ratio on the CNTs yield were investigated. Raman spectroscopy investigations showed that the highest yield was obtained when the ferric to ferro ratio was one. When the concentration of Fe3+ ion was higher than that of Fe2+, many short tubes were... 

    Linear Hardening in FCC Alloys

    , Ph.D. Dissertation Sharif University of Technology Hamdi, Farzad (Author) ; Asgari, Sirous (Supervisor)
    Abstract
    Previous observation and models on the origin of linear hardening behavior in FCC polycrystals are critically reviewed. To reveal the draw backs of the previous models, selected results of an investigation on the evolution of microstructure during simple compression testing of two FCC polycrystals, Inconel 625 superalloy and AISI 316L stainless steel are reported. It is found that while a number of FCC polycrystals show linear hardening behavior, the evolution of the underlying microstructure may be quite different. It is argued that, in contrast to the current belief, deformation twinning may not be the sole cause of linear hardening in low SFE FCC polycrystals. It is suggested that only... 

    The Study and Comparison of Serrated Flow in IN600, IN625, and MP35N

    , M.Sc. Thesis Sharif University of Technology Nima Nikpoor Badr (Author) ; Asgari, Sirous (Supervisor)
    Abstract
    A large number of metals and alloys show an irregular plastic behavior called serrated flow when being deformed in a certain temperature and strain rate range. The occurrence of this phenomenon affects the mechanical properties of the material, such as work hardening rate and ductility; consequently, it exerts limitations on the service conditions in which the alloy can be used.
    IN600, IN625 and MP35N are wrought Ni based and Ni-Co based alloys which are thermo-mechanically processed. When these alloys are deformed in temperatures between 300-700 ˚C, serrated plastic flow occurs. In order to investigate the mechanisms responsible for irregularities, hot compression tests were conducted... 

    Production of Nanostructured Composite Sheets of AA1100/St37 Using ARB Technique and Evaluation of Heat Treatment Effect on Grains Structure

    , M.Sc. Thesis Sharif University of Technology Vakili, Hossein (Author) ; Asgari, Sirous (Supervisor)
    Abstract
    In present work, nanostructured multilayer composites produced from AA1100 and St37 alloys and mechanical properties of resulted samples characterized using tension and micro hardness tests. Also dispersion pattern of second phase in matrix studied via optical microscopy. Thickness of second phase layers showed a little reduction after 2 ARB cycles; but their length decrease gradually. With increasing number of ARB cycles up to 6 cycles, sample's tensile strength first decrease rapidly and after that increased, but never reached initial value. In order to evaluation of heat treatment effects on samples grain structure, samples heat treated and tensile test carried on them. Annealing at 300... 

    Investigation of Effect of Temperature and Tension on Precipitation Behavior of AEREX350 Superalloy

    , M.Sc. Thesis Sharif University of Technology Samaee Aghmiyoni, Vahid (Author) ; Asgari, Sirous (Supervisor)
    Abstract
    AEREX350 is a wrought Ni-Co base superalloy which was first developed as a fastener alloy and is a member of MP family of alloys which are thermo-mechanically processed. Due to chemical composition of AEREX350, the alloy benefits from precipitation hardening and solid solution strengthening as well as cold working and can be used in higher temperatures. To investigate the effect of deformation during precipitation, solution-treated samples was underwent hot compression test up to strain of 0.5 at range 650-800˚C, range of γ΄ formation. It is seen that work-hardening and deformation mechanism of high temperature deformation is slip and as a result its structure is dislocation but in room... 

    Hydrothermal synthesis of aligned Hydroxyapatite nanorods with ultra-high crystallinity

    , Article International Journal of Engineering, Transactions B: Applications ; Volume 21, Issue 2 , 2008 , Pages 109-116 ; 1728-144X (ISSN) Manafi, S ; Rahimipour, M. R ; Yazdani, B ; Sadrnezhaad, S. K ; Amin, M. H ; Sharif University of Technology
    Materials and Energy Research Center  2008
    Abstract
    Hydroxyapatite nanorods aligned with ultrahigh crystallinity and high-yield were successfully synthesized through a hydrothermal approach. In this experiment, a new composition of cetyltrimethylammonium bromide ((CH 3(CH2)15N+(CH3) 3Br-) was designated as CTAP)/Ca(NO3) 2/ (NH4)2HPO4/NaOH and distilled water under hydrothermal condition, to synthesize single crystal HAp nanorods with diameter of 20 ± 10 nm and length of 80 ± 20 nm, was introduced. Crystal phases were determined by X-ray diffraction (XRD). Scanning electron microscope (SEM) was applied to investigate the morphology. The microstructure of the HAp products were further observed by transmission electron microscope (TEM) and high... 

    Simulation of Retrogression Process Effect on Mechanical Properties and Formability of Precipitation-Hardenable Aluminum Alloys

    , Ph.D. Dissertation Sharif University of Technology Ebrahimi, Hossein (Author) ; Karimi Taheri, Ali (Supervisor)
    Abstract
    A common heat treatment used for hardenable aluminum alloys is the retrogression process. In this process, by dissolving a specific precipitate in the alloys (η'), the strength of the alloys is reduced and their formability is enhanced. However, by applying the retrogression process and deforming the alloy, followed by an aging cycle, the strength returns to its original state. In this project the microstructural evolution during the retrogression process in 7075-aluminum alloy has been primarily studied experimentally with the help of a transmission electron microscope and the effect of retrogression time on the microstructural evolution has been assessed. In addition, since the simulation... 

    Microstructural development and mechanical properties of nanostructured copper reinforced with SiC nanoparticles

    , Article Materials Science and Engineering A ; Volume 568 , 2013 , Pages 33-39 ; 09215093 (ISSN) Akbarpour, M. R ; Salahi, E ; Hesari, F. A ; Yoon, E. Y ; Kim, H. S ; Simchi, A ; Sharif University of Technology
    2013
    Abstract
    Nanostructured Cu and Cu-2. vol% SiC nanocomposite were produced by high energy mechanical milling and hot pressing technique. Microstructure development during fabrication process was investigated by X-ray diffraction, scanning electron microscope, scanning transmission electron microscope, and electron backscatter diffraction techniques. The results showed that the microstructure of copper and copper-based nanoco mposite composed of a mixture of equiaxed nanograins with bimodal and non-random misorientation distribution. The presence of SiC nanoparticles refined the grain structure of the copper matrix while the fraction of low angle grain boundaries was increased. Evaluation of mechanical... 

    Synthesis and crystallization of lead-zirconium-titanate (PZT) nanotubes at the low temperature using carbon nanotubes (CNTs) as sacrificial templates

    , Article Advanced Powder Technology ; Volume 23, Issue 5 , September , 2012 , Pages 647-654 ; 09218831 (ISSN) Mohammadi, M. R ; Tabei, S. A ; Nemati, A ; Eder, D ; Pradeep, T ; Sharif University of Technology
    Elsevier  2012
    Abstract
    Pb(Zr 0.52Ti 0.48)O 3 (PZT) nanotubes with diameters of 80-100 nm and a wall thickness of 15-20 nm were prepared by sol-gel template technique and using multi-walled carbon nanotubes (MWCNT) as sacrificial templates. The coating process of MWCNT with PZT precursor sol and removal of the carbon nanotubes by an interrupt heat treatment were discussed and studied by Raman spectroscopy. Simultaneous thermal analysis (STA) revealed that PZT nanotube crystallized at the low temperature of 410°C by the significantly low activation energy of crystallization of 103.7 kJ/mol. Moreover, based on the X-ray diffraction (XRD) pattern and selected area electron diffraction pattern the crystal structure of... 

    Hydrothermal synthesis and characterization of TiO 2 nanostructures using LiOH as a solvent

    , Article Advanced Powder Technology ; Volume 22, Issue 3 , 2011 , Pages 336-339 ; 09218831 (ISSN) Zanganeh, S ; Kajbafvala, A ; Zanganeh, N ; Molaei, R ; Bayati, M. R ; Zargar, H. R ; Sadrnezhaad, S. K ; Sharif University of Technology
    2011
    Abstract
    In the present study, we performed hydrothermal method as a simple and efficient route for the synthesis of rutile TiO 2 nanostructures in various concentrations of lithium hydroxide solutions. TiO 2 nanopowders with average sizes of 15 and 23 nm were prepared using 4 M and 7 M LiOH solutions. X-ray diffraction analysis (XRD), transmission electron microscope (FEG-STEM), scanning electron microscopy (SEM), and Brunauer-Emmet-Teller (BET) analyses were used in order to characterize the obtained products and comparison of the morphology of the powders obtained in different concentrations of LiOH solvent. It was shown that alkali solution concentration has affected the crystallinity,... 

    Fabrication, characterization and mechanical properties of hybrid composites of copper using the nanoparticulates of SiC and carbon nanotubes

    , Article Materials Science and Engineering A ; Volume 572 , 2013 , Pages 83-90 ; 09215093 (ISSN) Akbarpour, M. R ; Salahi, E ; Alikhani Hesari, F ; Simchi, A ; Kim, H. S ; Sharif University of Technology
    Abstract
    Copper based hybrid composites containing nano-sized silicon carbide and carbon nanotubes reinforcements with minimal porosity were fabricated via mechanical milling followed by hot pressing technique. Microstructures of the powders and consolidated materials were studied using scanning electron microscope, X-ray diffraction, Raman spectroscopy, and scanning transmission electron microscope. Microstructural characterization of the materials revealed that the addition of nanosized silicon carbide reinforcement lowered the grain growth rate and enhanced the homogenization during mechanical milling. Microhardness measurements and compression test showed considerable improvements in mechanical... 

    New gasochromic system: Nanoparticles in liquid

    , Article Journal of Nanoparticle Research ; Volume 14, Issue 4 , March , 2012 ; 13880764 (ISSN) Ranjbar, M ; Kalhori, H ; Mahdavi, S. M ; Zad, A. I ; Sharif University of Technology
    2012
    Abstract
    In this study, WO 3 nanocrystallites were first produced by laser ablation of W target in deionised water. To synthesize palladium, a PdCl 2 solution (0.2 g/L) was added to the liquid. Transmission electron microscope revealed successful synthesis of tungsten oxide nanocrystallites along with the production of Pd and core-shell Pd/WO3 nanoparticles. Gasochromic behavior was examined by hydrogen bubbling into Pd/WO 3 liquid in which a transition to blue absorbing state was observed. Optical absorption spectra of the colored liquid represented different sharp small polaron absorbing peaks below 3 eV and the peaks intensity was observed to be varied with Pd:WO 3 ratio. Time variations of... 

    Thermophysical and rheological behavior of polystyrene/silica nanocomposites: Investigation of nanoparticle content

    , Article Materials and Design ; Volume 32, Issue 8-9 , 2011 , Pages 4537-4542 ; 02641275 (ISSN) Vaziri, H. S ; Omaraei, I.A ; Abadyan, M ; Mortezaei, M ; Yousefi, N ; Sharif University of Technology
    Abstract
    In this work, solvent blending in combination with extruding are applied to provide polystyrene/silica nanocomposite specimens. Transmission electron microscope (TEM) and scanning electron microscope (SEM) show same nanoparticle dispersion in PS matrix in low to high filler loadings. Differential scanning calorimetry (DSC), dynamic mechanical thermal analyzer (DMTA) and thermogravimetric analyzer (TGA) were used to study the thermophysical characteristic of the nanocomposites in solid state. In addition, the melt state rheological behavior of the samples was investigated under constant and zero shear rates. Interestingly, different behaviors were detected in nanocomposites in low and high... 

    Analysis of structure-properties relationship in nitrile-butadiene rubber/phenolic resin/organoclay ternary nanocomposites using simple model system

    , Article Polymers for Advanced Technologies ; Volume 21, Issue 5 , April , 2010 , Pages 356-364 ; 10427147 (ISSN) Shojaei, A ; Faghihi, M ; Sharif University of Technology
    2010
    Abstract
    The present study deals with the structure-property relationship of organoclay (OC) filled nanocomposites based on rubber blend comprising of nitrile-butadiene rubber (NBR) and phenolic resin (PH). To obtain a better insight into the characteristics of the NBR/PH/OC hybrid system, a simple model system consisting of NBR/OC nanocomposites is also taken into consideration. A series of NBR/OC and NBR/PH/OC nanocomposites containing a wide range of OC concentrations (2.5-30 phr) are prepared by using traditional open two-roll mill. Structural analysis performed by X-ray diffraction (XRD), scanning electron microscope (SEM), and transmission electron microscope (TEM) exhibits mixed exfoliated and... 

    Water-based sol-gel nanocrystalline barium titanate: Controlling the crystal structure and phase transformation by Ba:Ti atomic ratio

    , Article Journal of Materials Science ; Volume 44, Issue 18 , 2009 , Pages 4959-4968 ; 00222461 (ISSN) Mohammadi, M. R ; Esmaeili Rad, A ; Fray, D. J ; Sharif University of Technology
    2009
    Abstract
    Highly stable, water-based barium titanate (BaTiO3) sols were developed by a low cost and straightforward sol-gel process. Nanocrystalline barium titanate thin films and powders with various Ba:Ti atomic ratios were produced from the aqueous sols. The prepared sols had a narrow particle size distribution in the range 21-23 nm and they were stable over 5 months. X-ray diffraction pattern revealed that powders contained mixture of hexagonal- or perovskite-BaTiO3 as well as a trace of Ba2Ti 13O22 and Ba4Ti2O27 phases, depending on annealing temperature and Ba:Ti atomic ratio. Highly pure barium titanate with cubic perovskite structure achieved with Ba:Ti = 50:50 atomic ratio at the high... 

    Controlling morphology and structure of nanocrystallineVcadmium sulfide (CdS) by tailoring solvothermal processing parameters

    , Article Journal of Nanoparticle Research ; Volume 13, Issue 7 , 2011 , Pages 3011-3018 ; 13880764 (ISSN) Dalvand, P ; Mohammadi, M. R ; Sharif University of Technology
    2011
    Abstract
    Cadmium sulfide (CdS) with different morphologies was successfully prepared by solvothermal process by controlling the processing parameters, including nature of precursor and solvent, reaction temperature and process time. X-ray diffraction patterns revealed that, in all cases highly pure and crystallized CdS with hexagonal structure were obtained. In addition, it was found that the processing parameters influence on preferable growth direction of CdS nanostructures. Field emission scanning electron microscope analysis showed that CdS nanowires with different aspect ratios were obtained (depending upon the reaction temperature and process time) in presence of sulfur powder and... 

    Template-based growth of titanium dioxide nanorods by a particulate sol-electrophoretic deposition process

    , Article Particuology ; Volume 9, Issue 2 , 2011 , Pages 161-169 ; 16742001 (ISSN) Mohammadi, M. R ; Ordikhani, F ; Fray, D. J ; Khomamizadeh, F ; Sharif University of Technology
    Abstract
    TiO2 nanorods have been successfully grown into a track-etched polycarbonate (PC) membrane by a particulate sol-electrophoretic deposition from an aqueous medium. The prepared sols had a narrow particle size distribution around 17 nm and excellent stability against aging, with zeta potentials in the range of 47-50 mV at pH 2. It was found that TiO2 nanorods were grown from dilute aqueous sol with a low, 0.1-M concentration. Fourier transform infrared spectroscopy (FT-IR) analysis confirmed that a full conversion of titanium isopropoxide was obtained by hydrolysis, resulting in the formation of TiO2 particles. X-ray diffraction (XRD) results revealed that TiO2 nanorods dried at 100 °C were a... 

    Low temperature nanostructured lithium titanates: Controlling the phase composition, crystal structure and surface area

    , Article Journal of Sol-Gel Science and Technology ; Volume 55, Issue 1 , 2010 , Pages 19-35 ; 09280707 (ISSN) Mohammadi, M. R ; Fray, D. J ; Sharif University of Technology
    2010
    Abstract
    Low temperature lithium titanate compounds (i.e., Li4Ti 5O12 and Li2TiO3) with nanocrystalline and mesoporous structure were prepared by a straightforward aqueous particulate sol-gel route. The effect of Li:Ti molar ratio was studied on crystallisation behaviour of lithium titanates. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) revealed that the powders were crystallised at the low temperature of 500 °C and the short annealing time of 1 h. Moreover, it was found that Li:Ti molar ratio and annealing temperature influence the preferable orientation growth of the lithium titanate compounds. Transmission electron microscope (TEM) images showed that the average...