Loading...
Search for: transmission-electron-microscopy-tem
0.01 seconds

    Producing ultrafine-grained aluminum rods by cyclic forward-backward extrusion: Study the microstructures and mechanical properties

    , Article Materials Letters ; Volume 74 , May , 2012 , Pages 147-150 ; 0167577X (ISSN) Alihosseini, H ; Zaeem, M. A ; Dehghani, K ; Shivaee, H. A ; Sharif University of Technology
    2012
    Abstract
    A cyclic forward-backward extrusion (CFBE) process was used as a severe plastic deformation (SPD) technique to produce ultrafine-grained aluminum rods. Yield strength and tensile strength of the specimens increased by increasing the number of CFBE cycles, while elongation to break decreased due to an increase in the grain refinement and microhardness. According to transmission electron microscopy (TEM) and electron backscatter diffraction (EBSD) results, the average grain size was reduced from 120 μm to 315 nm after only 3 cycles of CFBE  

    Facile fabrication and characterization of amino-functionalized Fe 3O4 cluster@SiO2 core/shell nanocomposite spheres

    , Article Materials Research Bulletin ; Volume 48, Issue 6 , 2013 , Pages 2023-2028 ; 00255408 (ISSN) Kalantari, M ; Kazemeini, M ; Arpanaei, A ; Sharif University of Technology
    2013
    Abstract
    We developed a modified straightforward method for the fabrication of uniformly sized silica-coated magnetite clusters core/shell type nanocomposite particles. Proposed simple one-step processing method permits quick production of materials in high yield. The structural, surface, and magnetic characteristics of the nanocomposite particles were investigated by transmission electron microscopy (TEM), scanning electron microscope (SEM), powder X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and Fourier-transform infrared (FTIR). The sphere-shaped particles almost have the average diameter of 120 nm, with a magnetic cluster core of 80 ± 15 nm, and a silica shell of 25 ± 10 nm... 

    Hydroxyapatite nanocomposites: Synthesis, sintering and mechanical properties

    , Article Ceramics International ; Volume 39, Issue 3 , April , 2013 , Pages 2197-2206 ; 02728842 (ISSN) Aminzare, M ; Eskandari, A ; Baroonian, M. H ; Berenov, A ; Razavi Hesabi, Z ; Taheri, M ; Sadrnezhaad, S. K ; Sharif University of Technology
    2013
    Abstract
    Two different hydroxyapatite based composites reinforced by oxide ceramic (20 wt%) nano crystals were synthesized by high-energy ball milling and sintered by pressure less technique. Alumina and titania nanoparticles as secondary phases improved densification and mechanical behavior of apatite and postponed its decomposition to the tricalcium phosphate (TCP) phases at elevated temperatures. Increasing the relative density of apatite using nano reinforcements leads to enhance the bending strength by more than 40% and 27% (as compared to the pure HA) and increase the hardness from 2.52 to 5.12 (Al2O3 composite) and 4.21 (TiO2 addition) GPa, respectively. Transmission electron microscopy (TEM),... 

    Magnesium nanopowder for hydrogen absorption and ammonium perchlorate decomposition

    , Article Materials Letters ; Volume 85 , 2012 , Pages 128-131 ; 0167577X (ISSN) Fahimpour, V ; Sadrnezhaad, S. K ; Sharif University of Technology
    2012
    Abstract
    Magnesium nanopowder (MgNP) of 17 nm average size was produced by planetary ball milling of Mg (φ=229 μm) with 10 wt% NaCl (φ=406 μm) for 50 h. NaCl was omissible by dissolution in saturated KOH. Partial oxidation of MgNP occurred, however, in presence of KOH. MgNP-NaCl mixture was, therefore, used for transmission electron microscopy (TEM), scanning electron microscopy (SEM), x-ray diffraction (XRD), differential scanning calorimetry (DSC) and Sieverts equilibrium investigation. DSC analysis of ammonium perchlorate showed one endothermic and three exothermic reactions. MgNP did not noticeably affect on the initial endothermic reaction. But it decreased transformation temperatures of the... 

    Sonochemical synthesis and measurement of optical properties of zinc sulfide quantum dots

    , Article Chemical Engineering Journal ; Volume 209 , 2012 , Pages 113-117 ; 13858947 (ISSN) Goharshadi, E. K ; Sajjadi, S. H ; Mehrkhah, R ; Nancarrow, P ; Sharif University of Technology
    2012
    Abstract
    A facile sonochemical method has been developed to prepare very small zinc sulfide nanoparticles (ZnS NPs) of extremely small size about 1. nm in diameter using a set of ionic liquids based on the bis (trifluoromethylsulfonyl) imide anion and different cations of 1-alkyl-3-methyl-imidazolium. The structural features and optical properties of the NPs were determined in depth with X-ray powder diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS) analysis, and UV-vis absorption spectroscopy. The energy band gap measurements of ZnS NPs were calculated by UV-vis absorption... 

    Synthesis of thoria nanoparticles via the hydrothermal method in supercritical condition

    , Article Materials Letters ; Volume 81 , 2012 , Pages 99-101 ; 0167577X (ISSN) Moeini, M ; Malekzadeh, A ; Ahmadi, S. J ; Hosseinpour, M ; Sharif University of Technology
    Elsevier  2012
    Abstract
    Thorium dioxide (thoria) nano-particle was synthesized by employing supercritical water (SCW) as an excellent reaction environment for hydrothermal crystallization of metal oxide particles. This method is ideal for production of ultrafine powder having controlled stoichiometry, high quality, purity and crystallinity. The nano-crystalline thoria was prepared in a stainless steel (316 L) autoclave, fed with an aqueous solution of Th(NO 3) 4.5H 2O as a reactant and took place under SCW condition up to 450 °C for 45 min. The product was recovered and characterized by X-Ray Diffraction (XRD), Thermal Gravimetry Analysis (TG/DTA) and Brunauer, Emmett and Teller (BET) surface area analysis. The... 

    Application of response surface methodology for optimization of paracetamol particles formation by RESS method

    , Article Journal of Nanomaterials ; Volume 2012 , 2012 ; 16874110 (ISSN) Karimi Sabet, J ; Ghotbi, C ; Dorkoosh, F ; Sharif University of Technology
    2012
    Abstract
    Ultrafine particles of paracetamol were produced by Rapid Expansion of Supercritical Solution (RESS). The experiments were conducted to investigate the effects of extraction temperature (313353K), extraction pressure (1018MPa), preexpansion temperature (363403K), and postexpansion temperature (273323 K) on particles size and morphology of paracetamol particles. The characterization of the particles was determined by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Liquid Chromatography/Mass Spectrometry (LC-MS) analysis. The average particle size of the original paracetamol was 20.8m, while the average particle size of paracetamol after nanonization via the... 

    Adsorption behavior of toxic metal Ions on nano-structured CuO granules

    , Article Separation Science and Technology (Philadelphia) ; Volume 47, Issue 7 , 2012 , Pages 1063-1069 ; 01496395 (ISSN) Ahmadi, S. J ; Sadjadi, S ; Hosseinpour, M ; Sharif University of Technology
    2012
    Abstract
    In this study, copper oxide nano particles were synthesized by batchwise supercritical hydrothermal method. After preparation of CuO nano particles, they were immobilized into the porous matrix of sodium alginate. The drying process formed a very porous structure that is useful for enhancing of adsorption activity. Produced CuO particles were characterized by X-ray diffractometery (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and BET for measuring the surface area. The prepared materials were then used as adsorbent in the removal of toxic metal ions in aqueous solution. To optimize the adsorption system, the effect of various parameters such as adsorbent... 

    Synthesis and characterization of Ni-Si mixed oxide nanocomposite as a catalyst for carbon nanotubes formation

    , Article Materials Science- Poland ; Volume 29, Issue 2 , June , 2011 , Pages 152-157 ; 01371339 (ISSN) Pasha, M. A ; Fakhroueian, Z ; Shafiekhani, A ; Vesaghi, M. A ; Farzaneh, F ; Sharif University of Technology
    2011
    Abstract
    Ni-Si mixed oxide nanocomposite was prepared by co-precipitation method with Ni(NO 3) 2 ·6H 2O and tetraethylorthosilicate (TEOS) at pH = 10.5 under reflux condition for 6 days. It was then used as a catalyst for the formation of carbon nanotubes (CNTs) by CVD procedure. Characterization of the catalyst and the CNTs was carried out using X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The results showed that Ni-Si mixed oxides nanorods with the average diameter of 3 to 4 nm play a key role in CNTs formation  

    Analysis and characterization of phase evolution of nanosized BaTiO 3 powder synthesized through a chemically modified sol-gel process

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Volume 43, Issue 11 , November , 2012 , Pages 4414-4426 ; 10735623 (ISSN) Ashiri, R ; Sharif University of Technology
    2012
    Abstract
    In the current research, a cost-effective and modified method with a high degree of reproducibility was proposed for the preparation of fine nanoscale and high-purity BaTiO3. In contrast to the other established methods, in this research, carbonate-free BaTiO3 nanopowders were prepared at a lower temperature and in a shorter time span. To reach an in-depth understanding of the scientific basis of the proposed process, an in-detail analysis was carried out for characterization of nanoscale BaTiO3 particles via differential thermal analysis (DTA)/thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and... 

    Fabrication of high-strength al/sicp nanocomposite sheets by accumulative roll bonding

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Volume 43, Issue 6 , 2012 , Pages 2085-2093 ; 10735623 (ISSN) Rezayat, M ; Akbarzadeh, A ; Owhadi, A ; Sharif University of Technology
    2012
    Abstract
    Accumulative roll bonding (ARB) was successfully used as a severe plastic deformation method to produce Al-SiC nanocomposite sheets. The effects of process pass and amount of SiC content on microstructure and mechanical properties of the composites are investigated. As expected, production of ultrafine grain structures by the ARB process as well as nanosize particulate reinforcements in the metal matrix composite (MMC) resulted in excellent mechanical properties. According to the results of the tensile tests, it is shown that the yield and tensile strengths of the composite sheet increased with the number of ARB cycles without saturation at the last cycles. Scanning electron microscopy (SEM)... 

    Photocatalytic degradation of methylene blue by TiO2-capped ZnO nanoparticles

    , Article 2nd International Congress on Ceramics, ICC 2008, Verona, 29 June 2008 through 4 July 2008 ; 2008 ; 9788880800842 (ISBN) Simchi, A ; Lak, A ; Nemati, Z. A ; SACMI; Iris Ceramica; SITI - B and T Group; Element Six; Corning ; Sharif University of Technology
    2008
    Abstract
    ZnO nanoparticles were fabricated via hydrothermal method and an amorphous TiO2 layer was then coated on the nanoparticles via sol-gel route. X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies showed that the synthesized ZnO nanoparticles were hexagonal with wurtzite structure and an average particle size of 38 nm. The thickness of the titanium oxide layer was determined to be 20-40 nm. The photocatalytic decolorization of Methylene blue under UV irradiation indicated that as-prepared TiO 2-capped ZnO is inferior than ZnO particles. Nevertheless, calcinations of the particles at 350 °C for 24 h significantly improved the photo-activity of the ZnO/TiO2 core/shell... 

    Dynamic restoration and microstructural evolution during hot deformation of a P/M Al6063 alloy

    , Article Materials Science and Engineering A ; Volume 542 , April , 2012 , Pages 56-63 ; 09215093 (ISSN) Asgharzadeh, H ; Simchi, A ; Kim, H. S ; Sharif University of Technology
    2012
    Abstract
    Hot deformation behavior of Al6063 alloy produced by direct powder extrusion was studied by means of uniaxial compression test in the temperature range between 300 and 450°C and strain rate range between 0.01 and 1s -1. Electron backscatter diffraction (EBSD) technique and transmission electron microscopy (TEM) were utilized to study the microstructure of the material before and after the hot deformation. The microstructure of the extruded alloy consisted of elongated grains within a subgrain structure and small grains free of low angle grain boundaries (LAGBs). An equiaxed duplex microstructure consisting of large substructured grains and fine grains separated by high angle grain boundaries... 

    Mechanical induced reaction in Al-CuO system for in-situ fabrication of Al based nanocomposites

    , Article Journal of Alloys and Compounds ; Volume 465, Issue 1-2 , 2008 , Pages 151-156 ; 09258388 (ISSN) Arami, H ; Simchi, A ; Seyed Reihani, S. M ; Sharif University of Technology
    2008
    Abstract
    Gradual chemical (displacement) reaction between CuO and Al powders during high-energy attrition milling under a high purity argon atmosphere was studied. Differential thermal analysis (DTA), X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques were employed to study the solid-state reaction. It was shown that the solid-state reaction occurred during mechanical alloying (MA) and resulted in the dissolution of copper into the aluminum lattice and formation of nanometric alumina particles. The reinforcement particles were mostly distributed at the grain boundaries of Al matrix with an average crystallite size of about 50 nm. In DTA curve of the milled powders, a small...