Loading...
Search for: transverse-displacements
0.01 seconds

    Free and forced random vibration analysis of sandwich plates with thick viscoelastic cores

    , Article JVC/Journal of Vibration and Control ; Volume 19, Issue 14 , 2013 , Pages 2223-2240 ; 10775463 (ISSN) Mahmoudkhani, S ; Haddadpour, H ; Navazi, H. M ; Sharif University of Technology
    2013
    Abstract
    Free vibrations and the transverse response of sandwich plates with viscoelastic cores under wide-band random excitation is studied with special attention to the so-called pumping, thickness-shear and stretching modes. The quadratic displacement field is adopted for all displacement components of the core to accurately capture the higher modes excited by the wide-band excitation. The Love-Kirchhoff plate theory is used for the face layers. The viscoelastic behavior of the core is modeled by the Golla-Hughes-McTavish method. An analytical solution using the normal mode method is provided for the simply supported boundary conditions by including a different family of modes. The effects of some... 

    Effects of vertical and pinch rolling on residual stress distributions in wire and arc additively manufactured components

    , Article Journal of Materials Engineering and Performance ; Volume 29, Issue 4 , 2020 , Pages 2073-2084 Tangestani, R ; Farrahi, G. H ; Shishegar, M ; Pourbagher Aghchehkandi, B ; Ganguly, S ; Mehmanparast, A ; Sharif University of Technology
    Springer  2020
    Abstract
    Residual stresses are inherent in parts manufactured using the wire + arc additive manufacturing (WAAM) technique, resulting in unpredictable mechanical response and structural integrity (Colegrove et al.: J Mater Process Technol 213:1782-1791, 2013). An effective post-processing technique, which enhances the mechanical properties of WAAM parts, is rolling. This study investigates the vertical and pinch rolling effects on residual stress distribution in WAAM components. Initially, a WAAM model was created using a thermo-mechanical finite element modelling approach and validated against the experimental results. Subsequent to the validation of the model, the effect of the main parameters... 

    Design and analysis of an innovative light tracking device based on opto-thermo-electro-mechanical actuators

    , Article Microelectronic Engineering ; Vol. 119 , May , 2014 , pp. 37-43 ; ISSN: 01679317 Mahmoudpour, M ; Zabihollah, A ; Vesaghi, M ; Kolbadinejad, M ; Sharif University of Technology
    Abstract
    This research presents an application of transparent lanthanum-modified lead zirconate titanate (PLZT) materials in micro light source tracking device, which is designed to function as a result of irradiation, having neither lead wires nor electric circuits. The focus of the paper is on the analytical and finite element investigation into ultraviolet photo-induced multi-physics responses of PLZT photocantilever and a comparison of the measured bending displacement to check the feasibility of these materials in design of micro light source tracking device. The finite element formulation of the transverse deflection for multi-physics analysis of PLZT ceramics by including the photovoltaic and... 

    Dynamic analysis of an inclined Timoshenko beam traveled by successive moving masses/forces with inclusion of geometric nonlinearities

    , Article Acta Mechanica ; Volume 218, Issue 1-2 , 2011 , Pages 9-29 ; 00015970 (ISSN) Mamandi, A ; Kargarnovin, M. H ; Sharif University of Technology
    2011
    Abstract
    In the first part of this paper, the nonlinear coupled governing partial differential equations of vibrations by including the bending rotation of cross section, longitudinal and transverse displacements of an inclined pinned-pinned Timoshenko beam made of linear, homogenous and isotropic material with a constant cross section and finite length subjected to a traveling mass/force with constant velocity are derived. To do this, the energy method (Hamilton's principle) based on the large deflection theory in conjuncture with the von-Karman strain-displacement relations is used. These equations are solved using the Galerkin's approach via numerical integration methods to obtain dynamic... 

    Longitudinal and transverse vibration of a single-walled carbon nanotube subjected to a moving nanoparticle accounting for both nonlocal and inertial effects

    , Article Physica E: Low-Dimensional Systems and Nanostructures ; Volume 42, Issue 9 , 2010 , Pages 2391-2401 ; 13869477 (ISSN) Kiani, K ; Sharif University of Technology
    2010
    Abstract
    Single-walled carbon nanotubes (SWCNTs) can be promising delivery nanodevices for a diverse range of applications, however, little is known about their dynamical interactions with moving nanoscale particles. In this paper, dynamic response of a SWCNT subjected to a moving nanoparticle is examined in the framework of the nonlocal continuum theory of Eringen. The inertial effects of the moving nanoparticle and the existing friction between the nanoparticle surface and the inner surface of the SWCNT are incorporated in the formulation of the problem. The equivalent continuum structure associated with the SWCNT is considered and modeled using nonlocal Rayleigh beam theory under simply supported... 

    Nonlinear dynamic analysis of an inclined Timoshenko beam subjected to a moving mass/force with beam's weight included

    , Article Shock and Vibration ; Volume 18, Issue 6 , 2011 , Pages 875-891 ; 10709622 (ISSN) Mamandi, A ; Kargarnovin, M. H ; Sharif University of Technology
    2011
    Abstract
    In this study, the nonlinear vibrations analysis of an inclined pinned-pinned self-weight Timoshenko beam made of linear, homogenous and isotropic material with a constant cross section and finite length subjected to a traveling mass/force with constant velocity is investigated. The nonlinear coupled partial differential equations of motion for the rotation of warped cross section, longitudinal and transverse displacements are derived using the Hamilton's principle. These nonlinear coupled PDEs are solved by applying the Galerkin's method to obtain dynamic responses of the beam. The dynamic magnification factor and normalized time histories of mid-point of the beam are obtained for various...