Loading...
Search for: transverse-magnetic
0.011 seconds

    Behavior of plasmonic nanoparticle array in near- and far-field coupling regimes for transverse electric and transverse magnetic polarizations

    , Article Journal of the Optical Society of America B: Optical Physics ; Volume 30, Issue 8 , 2013 , Pages 2286-2291 ; 07403224 (ISSN) Shahmansouri, A ; Rashidian, B ; Sharif University of Technology
    Optical Society of American (OSA)  2013
    Abstract
    We have previously reported the results of plasmonic behavior of an Au nanodisk array in the far-field coupling regime under oblique illumination with transverse electric polarization. In this paper, those results are studied in more detail. Here, results for transverse magnetic polarization are also presented and discussed. In addition to the far-field coupling regime, the results for the near-field coupling regime are also reported. Effects of different parameters, such as substrate thickness and array periodicity on the shape of plasmon spectra are discussed. It will be shown that in the far-field coupling regime, the diffractive grating orders can have a major role in the behavior of the... 

    Spin ladder with anisotropic ferromagnetic legs in a transverse magnetic field

    , Article Journal of Physics Condensed Matter ; Volume 19, Issue 7 , 2007 ; 09538984 (ISSN) Japaridze, G. I ; Langari, A ; Mahdavifar, S ; Sharif University of Technology
    2007
    Abstract
    We have studied the ground-state phase diagram of a two-leg spin ladder with anisotropic ferromagnetic leg couplings under the influence of a symmetry-breaking transverse magnetic field by the exact diagonalization technique. In the case of antiferromagnetic coupling between legs we identified two phase transitions in the plane of magnetic field versus interchain coupling strength. The first corresponds to the transition from the gapped rung-singlet phase to the gapped stripe-ferromagnetic phase. The second represents the transition from the gapped stripe-ferromagnetic phase into the fully polarized ferromagnetic phase. © IOP Publishing Ltd  

    Analytical method for the diffraction of an electromagnetic wave by subwavelength graphene ribbons

    , Article Journal of the Optical Society of America B: Optical Physics ; Volume 38, Issue 3 , 2021 , Pages 953-960 ; 07403224 (ISSN) Rahmanzadeh, M ; Khavasi, A ; Rejaei, B ; Sharif University of Technology
    The Optical Society  2021
    Abstract
    Theoretical study of arrays of graphene ribbons is currently of high interest due to its potential application in beam splitters, absorbers, and polarizers. In this paper, an analytical method is presented for diffraction analysis of graphene ribbon arrays. Previous analytical studies were carried out in the regime where the lateral separation between the ribbons is much smaller than the wavelength of the incident wave. As such, they cannot be used to calculate the reflection coefficients of higher diffracted orders. In contrast, the method proposed here can predict the electromagnetic response of graphene ribbon arrays even when the array constant is larger than the wavelength. To reach our... 

    Investigation of a quasi-3D plasmonic nanostructure for TE and TM polarizations

    , Article Journal of the Optical Society of America B: Optical Physics ; Vol. 31, issue. 11 , 2014 , p. 2838-2844 Shahmansouri, A ; Rashidian, B ; Sharif University of Technology
    Abstract
    Quasi-3D plasmonic nanostructures consisting of a metallic film perforated as an array of nanoholes, separated by a gap from a nanodisk array, are theoretically investigated under plane wave illumination with transverse electric and transverse magnetic polarizations. The results are compared with the results of a simple nanodisk array. A full discussion involving the couplings between plasmon resonance in nanodisks, surface plasmon polaritons on the interfaces of metallic film, and different diffractive grating orders that contribute in the couplings will be presented. The large difference between the plasmon behavior of the nanodisk array alone and nanodisk array in the presence of nanohole... 

    Phase diagram of J1-J2 transverse field Ising model on the checkerboard lattice: a plaquette-operator approach

    , Article European Physical Journal B ; Volume 88, Issue 10 , October , 2015 ; 14346028 (ISSN) Sadrzadeh, M ; Langari, A ; Sharif University of Technology
    springer berlin  2015
    Abstract
    We study the effect of quantum fluctuations by means of a transverse magnetic field (Γ) on the antiferromagnetic J1-J2 Ising model on the checkerboard lattice, the two dimensional version of the pyrochlore lattice. The zero-temperature phase diagram of the model has been obtained by employing a plaquette operator approach (POA). The plaquette operator formalism bosonizes the model, in which a single boson is associated to each eigenstate of a plaquette and the inter-plaquette interactions define an effective Hamiltonian. The excitations of a plaquette would represent an-harmonic fluctuations of the model, which lead not only to lower the excitation energy compared with a single-spin flip but... 

    Phase resonance tuning and multi-band absorption Via graphene-covered compound metallic gratings

    , Article IEEE Journal of Quantum Electronics ; Volume 53, Issue 5 , 2017 ; 00189197 (ISSN) Hemmatyar, O ; Rahmani, B ; Bagheri, A ; Khavasi, A ; Sharif University of Technology
    Abstract
    1-D compound metallic grating (CMG) is a periodic structure with more than one slit in each period. When CMG is combined with a graphene sheet as its cover, the incident light is effectively coupled to the plasmons in graphene which in turn can result in strong manipulation of light for both major polarizations. We show that tunable phase resonance and perfect absorption of the incident light are interesting outcomes of this manipulation. In this paper, we demonstrate that fano-like phase resonances which can be observed in CMGs under transverse magnetic polarized incident wave are tuned by changing the Fermi level of graphene. It is shown that while the spectral position of the phase... 

    Adopting image theorem for rigorous analysis of a perfect electric conductor–backed array of graphene ribbons

    , Article Journal of the Optical Society of America B: Optical Physics ; Volume 35, Issue 8 , 2018 , Pages 1836-1844 ; 07403224 (ISSN) Rahmanzadeh, M ; Abdolali, A ; Khavasi, A ; Rajabalipanah, H ; Sharif University of Technology
    OSA - The Optical Society  2018
    Abstract
    Analytical and numerical study of graphene ribbons has become a prime focus of recent research due to their potential applications in tunable absorption, wavefront manipulation, polarization conversion, and so on. In this paper, an accurate analysis of a perfect electric conductor (PEC)–backed array of graphene ribbons (PAGR) is presented based on the well-known electromagnetic (EM) image theorem, where the induced currents are theoretically derived under a transverse-magnetic-polarized incident wave. For the first time, the proposed analysis rigorously incorporates the EM coupling effects between the PEC back plate and the subwavelength array of graphene ribbons. It is proved that the... 

    Wide-band/angle blazed dual mode metallic groove gratings

    , Article IEEE Transactions on Antennas and Propagation ; 16 June , 2020 Hemmatyar, O ; Abbassi, M. A ; Rahmani, B ; Memarian, M ; Mehrany, K ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    A simple approach to acquire wide-band/angle blazing operation in one-dimensional metallic gratings is investigated by means of mode-matching and equivalent circuit analysis. The gratings are single-groove perfectly conducting gratings that support two propagating guided modes (opposed to typical single mode cases). It is shown under what conditions, one can achieve blazing over a wide range of frequencies and angles. Most importantly, it is identified what governs blazing, in particular the true matching condition that needs to be satisfied, and how the structures’ multiple resonances play role in achieving such matching and tailoring the bandwidth. Parameters of the proposed equivalent... 

    Wide-band/angle blazed dual-mode metallic groove gratings

    , Article IEEE Transactions on Antennas and Propagation ; Volume 69, Issue 1 , 2021 , Pages 379-386 ; 0018926X (ISSN) Hemmatyar, O ; Abbassi, M. A ; Rahmani, B ; Memarian, M ; Mehrany, K ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    A simple approach to acquire wide-band/angle blazing operation in 1-D metallic gratings is investigated by means of mode-matching and equivalent circuit analysis. The gratings are single-groove perfectly conducting gratings that support two propagating guided modes (opposed to typical single-mode cases). It is shown under what conditions one can achieve blazing over a wide range of frequencies and angles. Most importantly, it is identified what governs blazing, in particular the true matching condition that needs to be satisfied, and how the structures' multiple resonances play role in achieving such matching and tailoring the bandwidth. Parameters of the proposed equivalent circuit model... 

    Thermodynamic behavior of the XXZ Heisenberg s = 1/2 chain around the factorizing magnetic field

    , Article Journal of Physics Condensed Matter ; Volume 22, Issue 21 , May , 2010 ; 09538984 (ISSN) Abouie, J ; Langari, A ; Siahatgar, M ; Sharif University of Technology
    2010
    Abstract
    We have investigated the zero-and finite-temperature behaviors of the anisotropic antiferromagnetic Heisenberg XXZ spin-1/2 chain in the presence of a transverse magnetic field (h). The attention is concentrated on an interval of magnetic field between the factorizing field (hf) and the critical one (hc). The model presents a spin-flop phase for 0 < h < hf with an energy scale which is defined by the long range antiferromagnetic order while it undergoes an entanglement phase transition at h = hf. The entanglement estimators clearly show that the entanglement is lost exactly at h = hf, which justifies different quantum correlations on both sides of the factorizing field. As a consequence of... 

    Rotational symmetry breaking toward a string-valence bond solid phase in frustrated J1−J2 transverse field Ising model

    , Article Physica C: Superconductivity and its Applications ; Volume 549 , 2018 , Pages 1-3 ; 09214534 (ISSN) Sadrzadeh, M ; Langari, A ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    We study the effect of quantum fluctuations by means of a transverse magnetic field (Γ) on the highly degenerate ground state of antiferromagnetic J1−J2 Ising model on the square lattice, at the limit J2/J1=0.5. We show that harmonic quantum fluctuations based on single spin flips can not lift such degeneracy, however an-harmonic quantum fluctuations based on multi spin cluster flip excitations lift the degeneracy toward a unique ground state with string-valence bond solid (VBS) nature. A cluster operator formalism has been implemented to incorporate an-harmonic quantum fluctuations. We show that cluster-type excitations of the model lead not only to lower the excitation energy compared with... 

    Universal tensor-network algorithm for any infinite lattice

    , Article Physical Review B ; Volume 99, Issue 19 , 2019 ; 24699950 (ISSN) Jahromi, S. S ; Orús, R ; Sharif University of Technology
    American Physical Society  2019
    Abstract
    We present a general graph-based projected entangled-pair state (gPEPS) algorithm to approximate ground states of nearest-neighbor local Hamiltonians on any lattice or graph of infinite size. By introducing the structural matrix, which codifies the details of tensor networks on any graphs in any dimension d, we are able to produce a code that can be essentially launched to simulate any lattice. We further introduce an optimized algorithm to compute simple tensor updates as well as expectation values and correlators with a mean-field-like effective environments. Though not being variational, this strategy allows to cope with PEPS of very large bond dimension (e.g., D=100) and produces...