Loading...
Search for: trap-states
0.006 seconds

    Highly formed luminescent oxygen trap states in thermochemically prepared CdS nanocrystals and improvement of the luminescence property

    , Article Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry ; Volume 46, Issue 3 , 2016 , Pages 327-333 ; 15533174 (ISSN) Marandi, M ; Amrollahi, R ; Taghavinia, N ; Sharif University of Technology
    Taylor and Francis Inc 
    Abstract
    CdS nanocrystals were prepared through a thermally activated (thermochemical) method. The synthesis was performed in two different oxygen-saturated and Ar purged atmospheres. Na2S2O3 was used as a heat-sensitive source of S in the experiments. Thioglycerol was also applied as the capping agent to restrain the growth. The growth was activated by heating and controlled by solution pH. The results demonstrated a considerably higher luminescence intensity for the synthesis in oxygen-saturated atmosphere. This could show the role of luminescent oxygen trap states created inside the CdS nanocrystals. The improved luminescence was observed for the synthesis at different solution pHs. Nevertheless,... 

    Joint mapping of mobility and trap density in colloidal quantum dot solids [electronic resource]

    , Article Journal of ACS nano ; 2013, Vol.7, No. 7, P.5757-5762 Stadler, Philipp ; Sutherland, Brandon R ; Ren, Yuan ; Ning, Zhijun ; Simchi, A. (Arash) ; Thon, Susanna M ; Hoogland, Sjoerd ; Sargent, Edward H ; Sharif University of Technology
    Abstract
    Field-effect transistors have been widely used to study electronic transport and doping in colloidal quantum dot solids to great effect. However, the full power of these devices to elucidate the electronic structure of materials has yet to be harnessed. Here, we deploy nanodielectric field-effect transistors to map the energy landscape within the band gap of a colloidal quantum dot solid. We exploit the self-limiting nature of the potentiostatic anodization growth mode to produce the thinnest usable gate dielectric, subject to our voltage breakdown requirements defined by the Fermi sweep range of interest. Lead sulfide colloidal quantum dots are applied as the active region and are treated... 

    Joint mapping of mobility and trap density in colloidal quantum dot solids

    , Article ACS Nano ; Volume 7, Issue 7 , 2013 , Pages 5757-5762 ; 19360851 (ISSN) Stadler, P ; Sutherland, B. R ; Ren, Y ; Ning, Z ; Simchi, A ; Thon, S. M ; Hoogland, S ; Sargent, E. H ; Sharif University of Technology
    2013
    Abstract
    Field-effect transistors have been widely used to study electronic transport and doping in colloidal quantum dot solids to great effect. However, the full power of these devices to elucidate the electronic structure of materials has yet to be harnessed. Here, we deploy nanodielectric field-effect transistors to map the energy landscape within the band gap of a colloidal quantum dot solid. We exploit the self-limiting nature of the potentiostatic anodization growth mode to produce the thinnest usable gate dielectric, subject to our voltage breakdown requirements defined by the Fermi sweep range of interest. Lead sulfide colloidal quantum dots are applied as the active region and are treated... 

    Influence of energy band alignment in mixed crystalline TiO2 nanotube arrays: Good for photocatalysis, bad for electron transfer

    , Article Journal of Physics D: Applied Physics ; Volume 50, Issue 50 , 2017 ; 00223727 (ISSN) Mohammadpour, R ; Sharif University of Technology
    Abstract
    Despite the wide application ranges of TiO2, the precise explanation of the charge transport dynamic through a mixed crystal phase of this semiconductor has remained elusive. Here, in this research, mixed-phase TiO2 nanotube arrays (TNTAs) consisting of anatase and 0-15% rutile phases has been formed through various annealing processes and employed as a photoelectrode of a photovoltaic cell. Wide ranges of optoelectronic experiments have been employed to explore the band alignment position, as well as the depth and density of trap states in TNTAs. Short circuit potential, as well as open circuit potential measurements specified that the band alignment of more than 0.2 eV exists between the...