Loading...
Search for: trunk-movement
0.01 seconds

    Design and Manufacturing a Wearable Measuring System for Trunk Movements

    , M.Sc. Thesis Sharif University of Technology Mokhlespour Esfahani, Mohammad Iman (Author) ; Parnianpour, Mohamad (Supervisor) ; Narimani, Roya (Supervisor) ; Moshiri, Behzad (Co-Advisor) ; Hoviattalab, Maryam (Co-Advisor)
    Abstract
    Measurement of human movement during work, sport as daily activities has important effects for rehabilitation and biomechanics experts.
    Recently, several researches are concentrated on this technology significantly because of new progress in sensors and fusion sensors. In the near future, wearable and ambulatory devices will be used considerably in biomedical applications. In this study, we reviewed some methods about wearable measuring system then introduced and designed innovative wearable clothing for this purpose. Some specifications and advantages of our system in comparison with relevant researches are; using textile sensors that are manufactured through nano electro active polymer... 

    Trunk motion system (TMS) using printed body worn sensor (BWS) via data fusion approach

    , Article Sensors (Switzerland) ; Volume 17, Issue 1 , 2017 ; 14248220 (ISSN) Mokhlespour Esfahani, M. I ; Zobeiri, O ; Moshiri, B ; Narimani, R ; Mehravar, M ; Rashedi, E ; Parnianpour, M ; Sharif University of Technology
    MDPI AG  2017
    Abstract
    Human movement analysis is an important part of biomechanics and rehabilitation, for which many measurement systems are introduced. Among these, wearable devices have substantial biomedical applications, primarily since they can be implemented both in indoor and outdoor applications. In this study, a Trunk Motion System (TMS) using printed Body‐Worn Sensors (BWS) is designed and developed. TMS can measure three‐dimensional (3D) trunk motions, is lightweight, and is a portable and non‐invasive system. After the recognition of sensor locations, twelve BWSs were printed on stretchable clothing with the purpose of measuring the 3D trunk movements. To integrate BWSs data, a neural network data... 

    Trunk dynamic stability assessment for individuals with and without nonspecific low back pain during repetitive movement

    , Article Human Factors ; 2020 Asgari, M ; Mokhtarinia, H. R ; Sanjari, M. A ; Kahrizi, S ; Philip, G. C ; Parnianpour, M ; Khalaf, K ; Sharif University of Technology
    SAGE Publications Inc  2020
    Abstract
    Objective: This study aimed to employ nonlinear dynamic approaches to assess trunk dynamic stability with speed, symmetry, and load during repetitive flexion-extension (FE) movements for individuals with and without nonspecific low back pain (NSLBP). Background: Repetitive trunk FE movement is a typical work-related LBP risk factor contingent on speed, symmetry, and load. Improper settings/adjustments of these control parameters could undermine the dynamic stability of the trunk, hence leading to low back injuries. The underlying stability mechanisms and associated control impairments during such dynamic movements remain elusive. Method: Thirty-eight male volunteers (19 healthy, 19 NSLBP)... 

    Design and prototyping of wearable measuring system for trunk movement using textile sensors

    , Article ICEE 2012 - 20th Iranian Conference on Electrical Engineering, 15 May 2012 through 17 May 2012 ; May , 2012 , Pages 1571-1575 ; 9781467311489 (ISBN) Mokhlespour, M. I ; Zobeiri, O ; Narimani, R ; Hoviattalab, M ; Moshiri, B ; Parnianpour, M ; Sharif University of Technology
    2012
    Abstract
    Wearable system is a proper solution for rehabilitation and instrumentation applications for human daily activities. Recently, several researches are concentrated on this technology significantly because of new progress in sensors and fusion sensors. In the near future, wearable and ambulatory devices will be used considerably in biomedical applications. In this study, we reviewed some methods about wearable measuring system then introduced and designed innovative wearable clothing for this purpose. Some specifications and advantages of our system in comparison with relevant researches are; using painted sensors that are manufactured through nano electro active polymer technology, low... 

    Trunk dynamic stability assessment for individuals with and without nonspecific low back pain during repetitive movement

    , Article Human Factors ; Volume 64, Issue 2 , 2022 , Pages 291-304 ; 00187208 (ISSN) Asgari, M ; Mokhtarinia, H. R ; Sanjari, M. A ; Kahrizi, S ; Philip, G. C ; Parnianpour, M ; Khalaf, K ; Sharif University of Technology
    SAGE Publications Inc  2022
    Abstract
    Objective: This study aimed to employ nonlinear dynamic approaches to assess trunk dynamic stability with speed, symmetry, and load during repetitive flexion-extension (FE) movements for individuals with and without nonspecific low back pain (NSLBP). Background: Repetitive trunk FE movement is a typical work-related LBP risk factor contingent on speed, symmetry, and load. Improper settings/adjustments of these control parameters could undermine the dynamic stability of the trunk, hence leading to low back injuries. The underlying stability mechanisms and associated control impairments during such dynamic movements remain elusive. Method: Thirty-eight male volunteers (19 healthy, 19 NSLBP)... 

    Studying the effect of kinematical pattern on the mechanical performance of paraplegic gait with reciprocating orthosis

    , Article Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine ; Volume 226, Issue 8 , 2012 , Pages 600-611 ; 09544119 (ISSN) Nakhaee, K ; Farahmand, F ; Salarieh, H ; Sharif University of Technology
    SAGE  2012
    Abstract
    Paraplegic users of mechanical walking orthoses, e.g. advanced reciprocating gait orthosis (ARGO), often face high energy expenditure and extreme upper body loading during locomotion. We studied the effect of kinematical pattern on the mechanical performance of paraplegic locomotion, in search for an improved gait pattern that leads to lower muscular efforts. A three-dimensional, four segment, six-degrees-of-freedom skeletal model of the advanced reciprocating gait orthosis-assisted paraplegic locomotion was developed based on the data acquired from an experimental study on a single subject. The effect of muscles was represented by ideal joint torque generators. A response surface analysis...