Loading...
Search for: trunk-muscles
0.01 seconds

    Can simple trunk muscle models balance and stabilize lumbar spine during support of symmetric and asymmetric loads? a FE model study

    , Article 2007 ASME Summer Bioengineering Conference, SBC 2007, Keystone, CO, 20 June 2007 through 24 June 2007 ; 2007 , Pages 443-444 ; 0791847985 (ISBN); 9780791847985 (ISBN) Kiapour, A ; Shirazi Adl, A ; Parnianpour, M ; Sharif University of Technology
    2007

    Evaluation of trunk muscle activation during the two directions of flexi-bar exercise in people with and without low back pain

    , Article Journal of Modern Rehabilitation ; Volume 16, Issue 4 , 2022 , Pages 304-311 ; 2538385X (ISSN) Herasi, M ; Kahrizi, S ; Hoviattalab, M ; Sharif University of Technology
    Tehran University of Medical Sciences  2022
    Abstract
    Introduction: The flexible-bar with a small amplitude of 5 Hz, which transmits vibrations to the trunk, enables the activation of the core muscles that can be used to rehabilitate subjects with low back pain. Two types of exercise direction that can affect trunk muscles of low back pain subjects similar control group are not known. This study aimed to evaluate and compare exercises with two directions of the oscillating flexible poles in people with and without low back pain (LBP). Materials and Methods: Twelve women with Mean±SD age of 28.75±2.92 years, and body mass index (BMI) of 22.31±2.10 kg/m2 and a history of low back pain, and 12 healthy subjects with Mean±SD age of 28.75±2.49 years... 

    Sex-Dependent estimation of spinal loads during static manual material handling activities—combined in vivo and in silico analyses

    , Article Frontiers in Bioengineering and Biotechnology ; Volume 9 , 2021 ; 22964185 (ISSN) Firouzabadi, A ; Arjmand, N ; Pan, F ; Zander, T ; Schmidt, H ; Sharif University of Technology
    Frontiers Media S.A  2021
    Abstract
    Manual material handling (MMH) is considered as one of the main contributors to low back pain. While males traditionally perform MMH tasks, recently the number of females who undertake these physically-demanding activities is also increasing. To evaluate the risk of mechanical injuries, the majority of previous studies have estimated spinal forces using different modeling approaches that mostly focus on male individuals. Notable sex-dependent differences have, however, been reported in torso muscle strength and anatomy, segmental mass distribution, as well as lifting strategy during MMH. Therefore, this study aimed to use sex-specific models to estimate lumbar spinal and muscle forces during... 

    A model-based approach for estimation of changes in lumbar segmental kinematics associated with alterations in trunk muscle forces

    , Article Journal of Biomechanics ; 2017 ; 00219290 (ISSN) Shojaei, I ; Arjmand, N ; Meakin, J. R ; Bazrgari, B ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    The kinematics information from imaging, if combined with optimization-based biomechanical models, may provide a unique platform for personalized assessment of trunk muscle forces (TMFs). Such a method, however, is feasible only if differences in lumbar spine kinematics due to differences in TMFs can be captured by the current imaging techniques. A finite element model of the spine within an optimization procedure was used to estimate segmental kinematics of lumbar spine associated with five different sets of TMFs. Each set of TMFs was associated with a hypothetical trunk neuromuscular strategy that optimized one aspect of lower back biomechanics. For each set of TMFs, the segmental... 

    A model-based approach for estimation of changes in lumbar segmental kinematics associated with alterations in trunk muscle forces

    , Article Journal of Biomechanics ; Volume 70 , March , 2018 , Pages 82-87 ; 00219290 (ISSN) Shojaei, I ; Arjmand, N ; Meakin, J ; Bazrgari, B ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The kinematics information from imaging, if combined with optimization-based biomechanical models, may provide a unique platform for personalized assessment of trunk muscle forces (TMFs). Such a method, however, is feasible only if differences in lumbar spine kinematics due to differences in TMFs can be captured by the current imaging techniques. A finite element model of the spine within an optimization procedure was used to estimate segmental kinematics of lumbar spine associated with five different sets of TMFs. Each set of TMFs was associated with a hypothetical trunk neuromuscular strategy that optimized one aspect of lower back biomechanics. For each set of TMFs, the segmental... 

    Variations in trunk muscle activities and spinal loads following posterior lumbar surgery: A combined in vivo and modeling investigation

    , Article Clinical Biomechanics ; Volume 30, Issue 10 , 2015 , Pages 1036-1042 ; 02680033 (ISSN) Jamshidnejad, S ; Arjmand, N ; Sharif University of Technology
    Abstract
    Background Iatrogenic injuries to paraspinal muscles during posterior lumbar surgery cause a reduction in their contractile cross-sectional area and thus presumably their postoperative activation. This study investigates the effect of such intraoperative injuries on postoperative patterns of muscle activations and spinal loads during various activities using a combined modeling and in vivo MR imaging approach. Methods A three-dimensional, multi-joint, musculoskeletal model was used to estimate pre- and postoperative muscle forces and spinal loads under various activities in upright and flexed postures. According to our in vivo pre- and postoperative (∼ 6 months) measurements in six patients... 

    Trunk biomechanics during maximum isometric axial torque exertions in upright standing

    , Article Clinical Biomechanics ; Volume 23, Issue 8 , 2008 , Pages 969-978 ; 02680033 (ISSN) Arjmand, N ; Shirazi Adl, A ; Parnianpour, M ; Sharif University of Technology
    2008
    Abstract
    Background: Activities involving axial trunk rotations/moments are common and are considered as risk factors for low back disorders. Previous biomechanical models have failed to accurately estimate the trunk maximal axial torque exertion. Moreover, the trunk stability under maximal torque exertions has not been investigated. Methods: A nonlinear thoracolumbar finite element model along with the Kinematics-driven approach is used to study biomechanics of maximal axial torque generation during upright standing posture. Detailed anatomy of trunk muscles with six distinct fascicles for each abdominal oblique muscle on each side is considered. While simulating an in vivo study of maximal axial... 

    Trunk muscles strength and endurance in chronic low back pain patients with and without clinical instability

    , Article Journal of Back and Musculoskeletal Rehabilitation ; Volume 25, Issue 2 , 2012 , Pages 123-129 ; 10538127 (ISSN) Davarian, S ; Maroufi, N ; Ebrahimi, I ; Farahmand, F ; Parnianpour, M ; Sharif University of Technology
    2012
    Abstract
    Objectives: Previous research has shown inconsistent findings regarding muscle endurance in chronic low back pain (CLBP). Questions also remain about muscle endurance in patients with clinical instability. The aim of this study was to investigate trunk muscles strength and endurance in CLBP patients with and without clinical instability. Methods: 32 CLBP patients (15 with and 17 without clinical instability) and 39 matched healthy subjects participated in this study. The standing extension test was performed to assess the strength and endurance of the lumbar extensors while recording their electromyographic activity. The patients' disability was evaluated using the Oswestry and Roland-Morris... 

    Controllability and maintenance of human trunk response surface for isometric extension strength

    , Article ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010, 12 July 2010 through 14 July 2010 ; Volume 1 , July , 2010 , Pages 733-738 ; 9780791849156 (ISBN) Azghani, M. R ; Farahmand, F ; Meghdari, A ; Hakkak, F ; Parnianpour, M ; ASME Turkey Section; Loughborough University ; Sharif University of Technology
    2010
    Abstract
    From an ergonomic point of view, quantitative assessment of the feasibility of the task performance is an intricate process, which combines the multidimensional task demand profile with the individual's multidimensional performance capacity profile. Trunk muscle strength is affected by the trunk posture but it is not clear how the variability of trunk muscle is affected by the trunk posture or exertion level. A validated triaxial dynamometer, Sharif-LIST, was used for to model the surface response of trunk muscle extension strength variability as a function of trunk posture in the sagittal, coronal and transverse planes in standing position. Fifteen healthy males with no history of low back... 

    Can lumbosacral orthoses cause trunk muscle weakness? A systematic review of literature

    , Article Spine Journal ; Volume 17, Issue 4 , 2017 , Pages 589-602 ; 15299430 (ISSN) Azadinia, F ; Ebrahimi Takamjani, E ; Kamyab, M ; Parnianpour, M ; Cholewicki, J ; Maroufi, N ; Sharif University of Technology
    Elsevier Inc  2017
    Abstract
    Background Wearing lumbosacral orthosis (LSO) is one of the most common treatments prescribed for conservative management of low back pain. Although the results of randomized controlled trials suggest effectiveness of LSO in reducing pain and disability in these patients, there is a concern that prolonged use of LSO may lead to trunk muscle weakness and atrophy. Purpose The present review aimed to evaluate available evidence in literature to determine whether LSO results in trunk muscle weakness or atrophy. Study Design This is a systematic review. Methods A systematic search of electronic databases including PubMed, Scopus, ScienceDirect, and Medline (via Ovid) followed by hand search of... 

    Estimation of trunk muscle forces using a bio-inspired control strategy implemented in a neuro-osteo-ligamentous finite element model of the lumbar spine

    , Article Frontiers in Bioengineering and Biotechnology ; Volume 8 , 2020 Sharifzadeh Kermani, A ; Arjmand, N ; Vossoughi, G ; Shirazi Adl, A ; Patwardhan, A. G ; Parnianpour, M ; Khalaf, K ; Sharif University of Technology
    Frontiers Media S.A  2020
    Abstract
    Low back pain (LBP), the leading cause of disability worldwide, remains one of the most common and challenging problems in occupational musculoskeletal disorders. The effective assessment of LBP injury risk, and the design of appropriate treatment modalities and rehabilitation protocols, require accurate estimation of the mechanical spinal loads during different activities. This study aimed to: (1) develop a novel 2D beam-column finite element control-based model of the lumbar spine and compare its predictions for muscle forces and spinal loads to those resulting from a geometrically matched equilibrium-based model; (2) test, using the foregoing control-based finite element model, the... 

    A comprehensive evaluation of spine kinematics, kinetics, and trunk muscle activities during fatigue-induced repetitive lifting

    , Article Human Factors ; Volume 64, Issue 6 , 2022 , Pages 997-1012 ; 00187208 (ISSN) Kazemi, Z ; Mazloumi, A ; Arjmand, N ; Keihani, A ; Karimi, Z ; Ghasemi, M. S ; Kordi, R ; Sharif University of Technology
    SAGE Publications Inc  2022
    Abstract
    Objective: Spine kinematics, kinetics, and trunk muscle activities were evaluated during different stages of a fatigue-induced symmetric lifting task over time. Background: Due to neuromuscular adaptations, postural behaviors of workers during lifting tasks are affected by fatigue. Comprehensive aspects of these adaptations remain to be investigated. Method: Eighteen volunteers repeatedly lifted a box until perceived exhaustion. Body center of mass (CoM), trunk and box kinematics, and feet center of pressure (CoP) were estimated by a motion capture system and force-plate. Electromyographic (EMG) signals of trunk/abdominal muscles were assessed using linear and nonlinear approaches. The L5-S1... 

    An improved multi-joint EMG-assisted optimization approach to estimate joint and muscle forces in a musculoskeletal model of the lumbar spine

    , Article Journal of Biomechanics ; Volume 44, Issue 8 , 2011 , Pages 1521-1529 ; 00219290 (ISSN) Gagnon, D ; Arjmand, N ; Plamondon, A ; Shirazi Adl, A ; Larivière, C ; Sharif University of Technology
    Abstract
    Muscle force partitioning methods and musculoskeletal system simplifications are key modeling issues that can alter outcomes, and thus change conclusions and recommendations addressed to health and safety professionals. A critical modeling concern is the use of single-joint equilibrium to estimate muscle forces and joint loads in a multi-joint system, an unjustified simplification made by most lumbar spine biomechanical models. In the context of common occupational tasks, an EMG-assisted optimization method (EMGAO) is modified in this study to simultaneously account for the equilibrium at all lumbar joints (M-EMGAO). The results of this improved approach were compared to those of its... 

    Trunk muscle fatigue and its implications in EMG-assisted biomechanical modeling

    , Article International Journal of Industrial Ergonomics ; Volume 43, Issue 5 , 2013 , Pages 425-429 ; 01698141 (ISSN) Haddad, O ; Mirka, G.A ; Sharif University of Technology
    2013
    Abstract
    Muscle fatigue affects the underlying EMG-force relationship on which EMG-assisted biomechanical models rely. The aim of this study was to evaluate the impact of short duration muscle fatigue on the muscle gain value. Participants performed controlled, isometric trunk extension exertions at 10, 20, and 30 degrees of trunk flexion and controlled isokinetic trunk extension exertions at 5 and 15°/sec on five separate days. Fatigue of the lumbar extensors was generated by moderate-intensity, trunk extension exertions. Participants performed controlled test contractions at defined intervals throughout the fatiguing bout and the EMG activities of trunk muscles were collected. These EMG data were... 

    Role and significance of trunk and upper extremity muscles in walker-assisted paraplegic gait: a case study

    , Article Topics in Spinal Cord Injury Rehabilitation ; Volume 24, Issue 1 , 2018 , Pages 18-27 ; 10820744 (ISSN) Baniasad, M ; Farahmand, F ; Arazpour, M ; Zohoor, H ; Sharif University of Technology
    Thomas Land Publishers Inc  2018
    Abstract
    Background and Purpose: Understanding the role and significance of trunk and upper extremity muscles in paraplegic gait can help in designing more effective assistive devices for these patients and also provides valuable information for improving muscle strengthening programs. Methods: In a patient with a spinal cord injury (SCI) who could walk independently (rating scale of ambulatory capacity, 9) with the aid of bilateral ankle-foot orthosis and a walker, the kinematics, kinetics and electromyographic (EMG) activities of 16 muscles from the trunk and upper and lower extremities were recorded during gait. The onset, cessation, and duration of the EMG signal were associated with the 4 phases... 

    Design and evaluation of a novel triaxial isometric trunk muscle strength measurement system

    , Article Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine ; Volume 223, Issue 6 , 2009 , Pages 755-766 ; 09544119 (ISSN) Azghani, M. R ; Farahmand, F ; Meghdari, A ; Vossoughi, G ; Parnianpour, M ; Sharif University of Technology
    2009
    Abstract
    Maximal strength measurements of the trunk have been used to evaluate the maximum functional capacity of muscles and the potential mechanical overload or overuse of the lumbar spine tissues in order to estimate the risk of developing musculoskeletal injuries. A new triaxial isometric trunk strength measurement system was designed and developed in the present study, and its reliability and performance was investigated. The system consisted of three main revolute joints, equipped with torque sensors, which intersect at L5-S1 and adjustment facilities to fit the body anthropometry and to accommodate both symmetric and asymmetric postures in both seated and standing positions. The dynamics of...