Loading...
Search for: turbine-components
0.007 seconds
Total 44 records

    Control oriented modeling of a radial turbine for a turbocharged gasoline engine

    , Article Proceedings of the American Control Conference ; Article number 6580648 , 2013 , Pages 5207-5212 ; ISSN: 07431619 ; ISBN: 9781479901777 Salehi, R ; Shahbakhti, M ; Alasty, A ; Vossoughi, G. R ; Sharif University of Technology
    Abstract
    This paper presents a control oriented model for predicting turbine major variables in a turbocharged spark ignition engine. The turbine is simulated as a two-nozzle chamber where the pressure ratio over the two nozzles is not the same. A convex nonlinear estimation algorithm is formulated to determine the relation between these pressure ratios. The new model is experimentally validated with transient and steady state data collected from a 1.7 liter gasoline engine. The results show the new model can predict the turbine mass flow with an average error of 1.4%. In addition, the application of the turbine model is illustrated for the design of a nonlinear observer to estimate the turbocharger... 

    Hollow blades for small wind turbines operating at high atitudes

    , Article Journal of Solar Energy Engineering, Transactions of the ASME ; Volume 138, Issue 6 , 2016 ; 01996231 (ISSN) Pourrajabian, A ; Amir Nazmi Afshar, P ; Mirzaei, M ; Ebrahimi, R ; Wood, D. H ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME) 
    Abstract
    Since the air density reduces as altitude increases, operation of small wind turbines (SWTs), which usually have no pitch adjustment, remains challenging at high altitudes due largely to the reduction of starting aerodynamic torque. By reducing the moment of inertia through the use of hollow blades, this study aims to speed up the starting while maintaining the structural integrity of the blades and high output power. A horizontal axis turbine with hollow blades was designed for two sites in Iran with altitude of 500 m and 3000 m. The design variables are the distributions of the chord, twist, and shell thickness and the improvement of output power and starting are the design goals.... 

    A coupled adjoint formulation for non-cooled and internally cooled turbine blade optimization

    , Article Applied Thermal Engineering ; Volume 105 , 2016 , Pages 327-335 ; 13594311 (ISSN) Zeinalpour, M ; Mazaheri, K ; Chaharlang Kiani, K ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Most researches on the application of the adjoint method in turbine blade design are concentrated on the aerodynamic shape optimization without considering the heat transfer to/from the blade material. In this study, the adjoint method is extended to the conjugate heat transfer problems in which the viscous flow field is coupled to heat transfer in the solid region. Introducing a new adjoint variable in the solid domain, a heat adjoint equation is derived which is coupled with the energy adjoint equation in the fluid zone at the fluid/solid interface. The detailed mathematical description associated with the derivation of the heat adjoint equation with corresponding boundary conditions are... 

    Entropy minimization in turbine cascade using continuous adjoint formulation

    , Article Engineering Optimization ; Volume 48, Issue 2 , 2016 , Pages 213-230 ; 0305215X (ISSN) Zeinalpour, M ; Mazaheri, K ; Sharif University of Technology
    Taylor and Francis Ltd 
    Abstract
    A complete continuous adjoint formulation is presented here for the optimization of the turbulent flow entropy generation rate through a turbine cascade. The adjoint method allows one to have many design variables, but still afford to compute the objective function gradient. The new adjoint system can be applied to different structured and unstructured grids as well as mixed subsonic and supersonic flows. For turbulent flow simulation, the k-ω shear-stress transport turbulence model and Roe's flux function are used. To ensure all possible shape models, a mesh-point method is used for design parameters, and an implicit smoothing function is implemented to avoid the generation of non-smoothed... 

    Modal-based damage identification for the nonlinear model of modern wind turbine blade

    , Article Renewable Energy ; Volume 94 , 2016 , Pages 391-409 ; 09601481 (ISSN) Rezaei, M. M ; Behzad, M ; Moradi, H ; Haddadpour, H ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    In this paper, the modal-based indices are used in damage identification of the wind turbine blade. In contrast of many of previous researches, the geometric nonlinearity due to the large structural deformation of the modern wind turbines blade is considered. In the first step, the finite element model (FEM) of the rotating blade is solved to obtain the modal features of the deformed structure under operational aerodynamic loading. Next, the accuracy and efficiency of the various modal-based damage indices including the frequency, mode shape, curvature of mode shape, modal assurance, modal strain energy (MSE) and the difference of indices (between the intact and damaged blades) are... 

    Gas turbine oxidation life assessment and monitoring

    , Article Oxidation of Metals ; Volume 90, Issue 5-6 , 2018 , Pages 691-711 ; 0030770X (ISSN) Mazaheri, F ; Alizadeh, M ; Akheratdoost, H ; Khaledi, H ; Sharif University of Technology
    Springer New York LLC  2018
    Abstract
    Gas turbine hot-section parts can be very expensive components with a finite lifetime. Their durability is strongly dependent on the operating service conditions which control the maintenance intervals and associated expenses. Blade damage is the most frequent reason for failures in gas turbine engines and also oxidation is one of the most critical degradation mechanisms when the power system operates in partially loading condition. This paper describes the methodology of oxidation life assessment for uncoated and coated blades with various metallic coatings in the first stage of a typical gas turbine engine. The resultant weight-change curves were validated by comparing them with the... 

    Nonlinear kinematics analysis and internal resonance of wind turbine blade with coupled flapwise and edgewise vibration modes

    , Article Journal of Sound and Vibration ; Volume 435 , 2018 , Pages 390-408 ; 0022460X (ISSN) Karimi, B ; Moradi, H ; Sharif University of Technology
    Academic Press  2018
    Abstract
    Environmental issues and energy crisis have caused the world attention to the renewable energies; especially the wind power, since they have low cost and high reliability. To achieve higher capacity, wind turbines have increased in their size over the years. However, the large size of the modern turbines has exacerbated the problem of vibrations, which results in lower efficiency and power generation. Because of the large deformations, the conventional linear theories cannot model the blades accurately, due to the importance of nonlinear effects in large scale wind turbines. In this research, a nonlinear kinematic model of the wind turbine blade is developed using the Hamilton's principle.... 

    Component and mode models for the short-term scheduling of combined-cycle units

    , Article IEEE Transactions on Power Systems ; Volume 24, Issue 2 , 2009 , Pages 976-990 ; 08858950 (ISSN) Liu, C ; Shahidehpour, M ; Li, Z ; Fotuhi Firuzabad, M ; Sharif University of Technology
    2009
    Abstract
    We propose a component model for the scheduling of combined-cycle gas turbine (CCGT) units by mixed-integer programming (MIP) in which combustion turbines (CTs) and steam turbines (STs) are modeled as individual units. The hourly schedule of CCGT based on the component model is compared with that of the mode model. The modeling of modes, which includes a combination of CTs and STs, would require certain approximations for representing fuel input-power output curves, ramping rate limits, minimum operating time limits, etc. The approximations can result in sub-optimal schedules. Furthermore, the commitment and dispatch of CCGTs based on the mode model will require a real-time dispatch to... 

    Micro-plasma actuator mechanisms in interaction with fluid flow for wind energy applications: Physical parameters

    , Article Physics of Fluids ; Volume 32, Issue 7 , 2020 Omidi, J ; Mazaheri, K ; Sharif University of Technology
    American Institute of Physics Inc  2020
    Abstract
    Plasma actuator is a flow control device to improve the aerodynamic performance of wind turbine blades at low airspeeds. One of the most robust numerical models for simulation of plasma actuator interaction with the fluid flow is the electrostatic model. This model is improved recently and is extensively verified by the authors. Due to the high cost of performing experimental optimizations, the optimized geometrical dimensions and materials of a plasma actuator may be sought by this numerical model. The aim of the present study is the aerodynamic enhancement of a DU21 wind turbine blade airfoil in which the effect of geometric parameters and the dielectric material is examined separately.... 

    Life prediction of wind turbine blades using multi-scale damage model

    , Article Journal of Reinforced Plastics and Composites ; Volume 40, Issue 17-18 , 2021 , Pages 644-653 ; 07316844 (ISSN) Aghajani, S ; Hemati, M ; Torabnia, S ; Sharif University of Technology
    SAGE Publications Ltd  2021
    Abstract
    Wind turbine blade life prediction is the most important parameter to estimate the power generation cost. Due to the price and importance of wind blade, many experimental and theoretical methods were developed to estimate damages and blade life. A novel multiaxial fatigue damage model is suggested for the life prediction of a wind turbine blade. Fatigue reduction of fiber and interfiber characteristics are separately treated and simulated in this research. Damage behavior is considered in lamina level and then extended to laminate; hence, this model can be used for multidirectional laminated composites. The procedure of fatigue-induced degradation is implemented in an ABAQUS user material... 

    Life prediction of wind turbine blades using multi-scale damage model

    , Article Journal of Reinforced Plastics and Composites ; Volume 40, Issue 17-18 , 2021 , Pages 644-653 ; 07316844 (ISSN) Aghajani, S ; Hemati, M ; Torabnia, S ; Sharif University of Technology
    SAGE Publications Ltd  2021
    Abstract
    Wind turbine blade life prediction is the most important parameter to estimate the power generation cost. Due to the price and importance of wind blade, many experimental and theoretical methods were developed to estimate damages and blade life. A novel multiaxial fatigue damage model is suggested for the life prediction of a wind turbine blade. Fatigue reduction of fiber and interfiber characteristics are separately treated and simulated in this research. Damage behavior is considered in lamina level and then extended to laminate; hence, this model can be used for multidirectional laminated composites. The procedure of fatigue-induced degradation is implemented in an ABAQUS user material... 

    Multi-point optimization of lean and sweep angles for stator and rotor blades of an axial turbine

    , Article Proceedings of the ASME Turbo Expo ; Vol. 2C, issue , 2014 Asgarshamsi, A ; Hajilouy-Benisi, A ; Assempour, A ; Pourfarzaneh, H
    Abstract
    In this research, numerical optimization of the rear part of a gas turbine, consisting of a single stage axial turbine is carried out. Automated aerodynamic shape optimization is performed by coupling a CFD flow simulation code with the Genetic Algorithm. An effective multi-point optimization method to improve efficiency and/or pressure ratio of the axial turbine is performed. Some variations of optimization parameters such as lean and sweep angels of stator and rotor blades are accomplished. Furthermore, during the optimization process, three-dimensional and turbulent flow field is numerically investigated using a compressible Navier-Stokes solver. The gas turbine experimental... 

    Failure analysis of a gas turbine compressor in a thermal power plant

    , Article Journal of Failure Analysis and Prevention ; Volume 13, Issue 3 , 2013 , Pages 313-319 ; 15477029 (ISSN) Masoumi Khalil Abad, E ; Farrahi, G. H ; Masoumi Khalil Abad, M ; Zare, A. A ; Parsa, S ; Sharif University of Technology
    2013
    Abstract
    This study presents the results of failure analysis of a 28 MW gas turbine at the Rei electrical power plant. The gas turbine failed during the shutdown period and near its second natural frequency at 4200 rpm. Initial inspections revealed that the compressor disk of stage 15 was fractured, and all of the stationary and rotary blades of stages 14-18 of the compressor had been detached or broken from the dovetail region of the disks. The fracture roots were investigated by performing finite element modeling and fractography analysis. It was shown that a crack was initiated from the disk edge on its interface with the rotor shaft and was propagated under cyclic loading. As a result of the... 

    Site specific optimization of wind turbines energy cost: Iterative approach

    , Article Energy Conversion and Management ; Volume 73 , September , 2013 , Pages 167-175 ; 01968904 (ISSN) Rezaei Mirghaed, M ; Roshandel, R ; Sharif University of Technology
    2013
    Abstract
    The present study was aimed at developing a model to optimize the sizing parameters and farm layout of wind turbines according to the wind resource and economic aspects. The proposed model, including aerodynamic, economic and optimization sub-models, is used to achieve minimum levelized cost of electricity. The blade element momentum theory is utilized for aerodynamic modeling of pitch-regulated horizontal axis wind turbines. Also, a comprehensive cost model including capital costs of all turbine components is considered. An iterative approach is used to develop the optimization model. The modeling results are presented for three potential regions in Iran: Khaf, Ahar and Manjil. The optimum... 

    Development of a reduced order model for nonlinear analysis of the wind turbine blade dynamics

    , Article Renewable Energy ; Volume 76 , February , 2015 , Pages 264-282 ; 09601481 (ISSN) Rezaei, M. M ; Behzad, M ; Haddadpour, H ; Moradi, H ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    In this paper, a reduced order model for the nonlinear dynamic analysis of the wind turbine blade under operational loading is presented. The accuracy and efficiency of the proposed model are investigated through various static and dynamic analyses. A comprehensive straightforward formulation for the nonlinear beam model is developed based on different large deformation strain theories. Also, the fluid-structure coupling effects due to quasi-steady aerodynamics and gravitational forces are included. The new matrix expressions are introduced for direct conversion of the developed formulation into the reduced order model (ROM). Thereafter, the ROM based on the Galerkin method is developed... 

    Fault detection of wind turbine blade under sudden change of wind speed condition using fiber optics

    , Article SAS 2015 - 2015 IEEE Sensors Applications Symposium, Proceedings, 13 April 2015 through 15 April 2015 ; April , 2015 ; 9781479961160 (ISBN) Zabihollah, A ; Entesari, F ; Alimohmmadi, H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    In this paper a structural health monitoring technique considering the effect of wind on structural stability on laminated composite wind turbine has been investigated. Based on fluid structure interaction method and Has hin failure criteria, condition monitoring of w ind turbine blades under sudden change of wind speed is investigated. The embedded fiber optic sensors are considered to detect the change in strain due to wind forces on the blades  

    Multi-objective optimization of lean and sweep angles for stator and rotor blades of an axial turbine

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; Volume 229, Issue 5 , June , 2015 , Pages 906-916 ; 09544100 (ISSN) Asgarshamsi, A ; Benisi, A. H ; Assempour, A ; Pourfarzaneh, H ; Sharif University of Technology
    SAGE Publications Ltd  2015
    Abstract
    The axial turbine is one of the most challenging components of gas turbines for industrial and aerospace applications. With the ever-increasing requirement for high-aerodynamic performance blades, three-dimensional aerodynamic shape optimization is of great importance. In this research, the rear part of a gas turbine consisting of a one-stage axial turbine is optimized numerically. A useful optimization algorithm is presented to improve the efficiency and/or pressure ratio of the axial turbine with two different objective functions. The three-dimensional blade-shape optimization is employed to study the effects of the turbine stator and rotor lean and sweep angles on the turbine performance.... 

    Temperature distribution on a gas turbine shaft exposed to swirl combustor flue

    , Article Journal of Thermophysics and Heat Transfer ; Volume 29, Issue 2 , 2015 , Pages 319-328 ; 08878722 (ISSN) Aghakashi, V ; Saidi, M. H ; Mozafari, A. A ; Keshavarz, P ; Sharif University of Technology
    Abstract
    A gas turbine shaft is generally exposed to high-temperature gases and may seriously be affected and overheated duetotemperature fluctuationsinthe combustion chamber. Vortex flow inthe combustion chamber may increase the heat release rate and combustion efficiency, as well as control the location of energy release. However, this may result in excessive temperature on the combustor equipment and gas turbine shaft. In this study, a new gas turbine combustion chamber implementing a liner around the shaft and the liquid-fuel feeding system is designed and fabricated. The influences of parameters such as the Reynolds number and the equivalence ratio are studied. Experimental results are compared... 

    A Pareto optimal multi-objective optimization for a horizontal axis wind turbine blade airfoil sections utilizing exergy analysis and neural networks

    , Article Journal of Wind Engineering and Industrial Aerodynamics ; Volume 136 , January , 2015 , Pages 62-72 ; 01676105 (ISSN) Mortazavi, S. M ; Soltani, M. R ; Motieyan, H ; Sharif University of Technology
    Elsevier  2015
    Abstract
    In this study a multi-objective genetic algorithm is utilized to obtain a Pareto optimal set of solutions for geometrical characteristics of airfoil sections for 10-meter blades of a horizontal axis wind turbine. The performance of the airfoil sections during the process of energy conversion is evaluated deploying a 2D incompressible unsteady CFD solver and the second law analysis. Artificial neural networks are trained employing CFD obtained data sets to represent objective functions in an algorithm which implements exergetic performance and integrity characteristics as optimization objectives. The results show that utilizing the second law approach along with Pareto optimality concept... 

    An analytical model of a gas turbine components performance and its experimental validation

    , Article Proceedings of the ASME Turbo Expo, 14 June 2010 through 18 June 2010, Glasgow ; Volume 1 , 2010 , Pages 335-340 ; 9780791843963 (ISBN) Pourfarzaneh, H ; Hajilouy Benisi, A ; Farshchi, M ; Sharif University of Technology
    2010
    Abstract
    Gas turbine has broad applications in variety of industries. The developing gas turbine efficiency is of great engineering concern. This appeals to more precise modeling as somewhat inevitable. Modeling plays a decisive and essential role not only in all design phases, but also in development and manufacturing process to investigate performance of an engine. In this research, components of a gas turbine including air intake, axial and centrifugal compressors, combustion chamber and axial turbine are investigated. A novel dimensionless modeling approach is introduced and then, the engine performance parameters are predicted. Setting up a systematic series of experiments on the existing engine...