Loading...
Search for: turbogenerators
0.007 seconds

    Heat trap detection in the stator bar of large turbogenerators during the fault of cooling water channels blockage

    , Article IECON Proceedings (Industrial Electronics Conference), 24 October 2016 through 27 October 2016 ; 2016 , Pages 1501-1506 ; 9781509034741 (ISBN) Kaboli, S ; Oraee, H ; Sharif University of Technology
    IEEE Computer Society  2016
    Abstract
    Cooling water is used to remove the heat from stator bar of large turbogenerators and prevent additional temperature rise. Blockage of these channels leads to heat traps along the stator bar and its temperature failure. In addition, transposition of strands in a bar causes accumulation of heat in some parts of stator bar because of non-uniform arrangement of cooling channels especially when some of channels are blocked. In this paper, effect of cooling water channels blockage is studied using a precise thermal model. It is shown that such heat traps cause additional temperature rise in stator bars and this phenomenon can not be detected by thermal sensors of turbogenerator. Laboratory and... 

    Empirical assessment of the performance characteristics in turbocharger turbine and compressor

    , Article Experimental Techniques ; Volume 34, Issue 3 , July , 2010 , Pages 54-67 ; 07328818 (ISSN) Hajilouy Benisi, A ; Rad, M ; Shahhosseini, M. R ; Sharif University of Technology
    2010
    Abstract
    The performance parameter uncertainties of turbomachines at different rotational speed were determined by experimental and analytical consideration. The instruments/sensors were located and installed according to the standards for evaluating the performance characteristics of turbine and compressor in a turbocharger laboratory in a wide range of rotational speeds. The comparison of turbine and compressor sensitivity shows that the sensitivity of compressor to 1% shift in the pressure is higher than that for the turbine. Results also show that the sensitivities of efficiency and power of turbine reduce as rotational speed increases. The total uncertainty of turbine and compressor are obtained... 

    Evaluation of imperial performance characteristic of turbocharger turbine and compressor

    , Article 9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference Proceedings, San Francisco, CA, 5 June 2006 through 8 June 2006 ; Volume 2 , 2006 , Pages 1019-1028 ; 1563478153 (ISBN); 9781563478154 (ISBN) Rad, M ; Hajilouy, A ; Shahhosseini, M. R ; Sharif University of Technology
    2006
    Abstract
    Performance characteristics of turbocharger turbine and compressor such as efficiency, mass parameter and power are determined experimentally at turbocharger laboratory. Accurate determination of the performance map is significant for manufacturers as well as end users. To this end accurate measurement of test parameters such as temperature, pressure, and speed are required. In this paper an analytic method to predict the measurement uncertainties in turbocharger laboratory, is described. Furthermore the effect of each test parameter on the performance uncertainty is considered. Test parameters that have the most significant influence on the performance uncertainties are identified.... 

    Power flow control of a matrix converter based micro-turbine distributed generation system

    , Article 2006 IEEE Power Engineering Society General Meeting, PES, Montreal, QC, 18 June 2006 through 22 June 2006 ; 2006 ; 1424404932 (ISBN); 9781424404933 (ISBN) Nikkhajoei, H ; Karimi Ghartemani, M ; Sharif University of Technology
    IEEE Computer Society  2006
    Abstract
    This paper presents a power flow controller for a matrix converter as the power electronic interface between a high-speed micro-turbine generator and a utility distribution system. The matrix converter converts the high-frequency of a micro-turbine generator to a conventional frequency of the utility system, based on a novel switching strategy. The controller regulates magnitude and phase-angle of the converter output voltage to accommodate real and reactive power flow requirements of the utility system. Performance of the matrix converter based microturbine generation system including the power flow controller is evaluated based on digital time-domain simulation studies in the PSCAD/EMTDC... 

    An analytical method for the reliability evaluation of wind energy systems

    , Article TENCON 2005 - 2005 IEEE Region 10 Conference, Melbourne, 21 November 2005 through 24 November 2005 ; Volume 2007 , 2005 ; 21593442 (ISSN); 0780393112 (ISBN); 9780780393110 (ISBN) Ehsani, A ; Fotuhi, M ; Abbaspour, A ; Ranjbar, A. M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2005
    Abstract
    Wind generation is one of the most successful sources of renewable energy for the production of electrical energy. The technical characteristics of wind generation make existing conventional generation models not directly applicable. This paper presents an analytical method for the reliability assessment of the flat-rated wind turbine generation systems. An example of flat rating is that of the MOD-2, a second-generation class of wind turbines. The power-velocity characteristic of the flat-rated wind turbines is employed in this paper to model the operating behavior of the installed wind turbine generators. For wind-power potential estimation, the Weibull distribution model is used. The... 

    Modeling of Bushehr NPP TG Load Reduction to Zero Test with Using RELAP5 Code and Evaluationof BNPP Safety Reports

    , M.Sc. Thesis Sharif University of Technology Vahman, Navid (Author) ; Ghofrani, Mohammad Bagher (Supervisor) ; Talebi, Majid (Co-Advisor)
    Abstract
    Due to inherent dangerous on human and environment safety in the nuclear power plant has significant importance. In order to ensure the safety of the plant and proper functioning ofits various components,before its operational exploitation, a series of commissioning tests should be conducted according to international standards for nuclear power plants. In addition, safety of the plant can be guaranteed bymodeling of transient states and possible scenarios of accident in different situations.In this research,by gathering geometric data and information about the facilities installed in the plant, modeling of Commissioning test of Bushehr Nuclear Power Plant (BNPP) and its associated accident... 

    Probabilistic optimal power flow in correlated hybrid wind-PV power systems: A review and a new approach

    , Article Renewable and Sustainable Energy Reviews ; Volume 41 , January , 2015 , Pages 1437-1446 ; 13640321 (ISSN) Aien, M ; Rashidinejad, M ; Firuz Abad, M. F ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Hastening the power industry reregulation juxtaposed with the unprecedented utilization of uncertain renewable energies (REs), faces power system operation with sever uncertainties. Consequently, uncertainty assessment of system performance is an obligation. This paper reviews the probabilistic techniques used for probabilistic optimal power flow (P-OPF) studies and proposes a novel and powerful approach using the unscented transformation (UT) method. The heart of the proposed method lies in how to produce the sampling points. Appropriate sampling points are chosen to perform the P-OPF with a high degree of accuracy and less computational burden compared with features of other existing... 

    Reliability improvement of power system utilizing BESS with wind farm

    , Article 2015 IEEE 15th International Conference on Environment and Electrical Engineering, EEEIC 2015 - Conference Proceedings, 10 June 2015 through 13 June 2015 ; 2015 , Pages 1120-1125 ; 9781479979936 (ISBN) Shahooei, Z ; Fotuhi-Firuzabad, M ; Abbaspour, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    In this paper, the effect of wind power generation on power system reliability is investigated. Furthermore, reliability improvement of power system using integrated battery energy storage system and wind farm will be evaluated. Growing demand for electrical energy, gradual diminishing of fossil fuel resources and environmental pollution due to continuous exploitation of them, have led to inevitable change of energy sources in power generation. Due to the random nature of wind speed, the power output of a wind farm is fluctuating; as a result, it does not have a proper control capability. The growing penetration of wind power generation in power system could cause various problems in... 

    A new analytical model of a radial turbine and validation by experiments

    , Article IEEE Aerospace Conference Proceedings, 6 March 2010 through 13 March 2010 ; March , 2010 ; 1095323X (ISSN) ; 9781424438884 (ISBN) Pourfarzaneh, H ; Hajilouy Benisi, A ; Farshchi, M ; Sharif University of Technology
    2010
    Abstract
    In the conceptual design phase of a turbocharger, where emphasis is mainly on parametric studies, before manufacturing and tests, a generalized and robust model that applies over a wide range properly, is unavoidable. 12The critical inputs such as turbine maps are not available during the conceptual design phase. Hence, generalized turbine models use alternate methods that work without any supplementary tests and can operate over wide ranges. One of the common and applicable modeling methods in design process is 'Dimensionless Modeling' using the constant coefficient scaling (CCS). This method can almost predict the turbine characteristics at the design point. However, at off-design... 

    A new analytical model of a centrifugal compressor and validation by experiments

    , Article Journal of Mechanics ; Volume 26, Issue 1 , 2010 , Pages 37-45 ; 17277191 (ISSN) Pourfarzaneh, H ; Hajilouy Benisi, A ; Farshchi, M ; Sharif University of Technology
    2010
    Abstract
    In the conceptual design phase of a turbocharger, where emphasis is mainly on parametric studies, before manufacturing and tests, a generalized and robust model that implies over a wide range properly, is unavoidable. The critical inputs such as compressor maps are not available during the conceptual design phase. Hence, generalized compressor models use alternate methods that work without any supplementary tests and can operate on wide range. One of the common and applicable modeling methods in design process is the 'Dimensionless Modeling' using the constant coefficient scaling (CCS). This method almost can predict the compressor characteristics at design point. However, at off design... 

    Active damping of torsional vibrations due to the sub-harmonic instability on a synchronous generator

    , Article 20th European Conference on Power Electronics and Applications, EPE 2018 ECCE Europe, 17 September 2018 through 21 September 2018 ; 2018 ; 9789075815283 (ISBN) Peyghami, S ; Azizi, A ; Mokhtari, H ; Blaabjerg, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    Sub-harmonic stability issues due to the interaction between a load-commutated motor drive and a synchronous turbo-generator train in a Liquefied Natural Gas (LNG) station are studied in this paper. The sub-harmonic current injected by motor drives may excite the mechanical torsional modes of turbogenerator train. In this paper, the electro-mechanical interaction phenomenon is investigated and an active damper is proposed to absorb the sub-harmonic currents of motor drives and increase the damping of the electro-mechanical system. Simulations and experiments validate the instability problem and effectiveness of the proposed solution. © 2018 EPE Association  

    Reliability-based selection of wind turbines for large-scale wind farms

    , Article World Academy of Science, Engineering and Technology ; Volume 37 , 2009 , Pages 734-740 ; 2010376X (ISSN) Fotuhi Firuzabad, M ; Salehi Dobakhshari, A ; Sharif University of Technology
    2009
    Abstract
    This paper presents a reliability-based approach to select appropriate wind turbine types for a wind farm considering site-specific wind speed patterns. An actual wind farm in the northern region of Iran with the wind speed registration of one year is studied in this paper. An analytic approach based on total probability theorem is utilized in this paper to model the probabilistic behavior of both turbines' availability and wind speed. Well-known probabilistic reliability indices such as loss of load expectation (LOLE), expected energy not supplied (EENS) and incremental peak load carrying capability (IPLCC) for wind power integration in the Roy Billinton Test System (RBTS) are examined. The... 

    Optimal design of a flux reversal permanent magnet machine as a wind turbine generator

    , Article Turkish Journal of Electrical Engineering and Computer Sciences ; Volume 28, Issue 2 , 2020 , Pages 693-707 Ghasemian, M ; Tahami, F ; Nasiri Gheidari, Z ; Sharif University of Technology
    Turkiye Klinikleri  2020
    Abstract
    Flux reversal permanent magnet generators are well suited for use as wind turbine generators owing to their high torque generation ability and magnetic gear. However, they suffer from poor voltage regulation due to their high winding inductance. In this paper, a design optimization method is proposed for flux reversal generators in wind turbine applications. The proposed method includes a new multiobjective function. Cost, volume of the generator, and mass of the permanent magnet are considered in it independently and simultaneously. Besides the new objective function, the main superiority of this paper compared with published papers is considering winding inductance in optimization... 

    Modeling and control of variable speed wind turbine generators for frequency regulation

    , Article IEEE Transactions on Sustainable Energy ; Volume 11, Issue 2 , 2020 , Pages 916-927 Ravanji, M. H ; Canizares, C. A ; Parniani, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    Wind turbine generators (WTG) can participate in system frequency regulation via virtual inertial controllers (VIC). In the presence of frequency disturbances, VIC temporarily regulates the WTG power output forcing it to release/absorb kinetic energy into/from the grid. With increasing penetration of WTGs in power systems, grid operators require these generators to provide frequency regulation services; however, kinetic energy release/absorption can destabilize WTGs. Hence, to address these issues, a new large-perturbation nonlinear WTG model is proposed in this paper, based on the WTG internal response that is used to tune typical VICs. Novel worst case and optimal VIC tuning approaches are... 

    Influence of model simplifications and parameters on dynamic performance of grid connected fixed speed wind turbines

    , Article 19th International Conference on Electrical Machines, ICEM 2010, 6 September 2010 through 8 September 2010, Rome ; 2010 ; 9781424441754 (ISBN) Tohidi, S ; Rabiee, A ; Parniani, M ; Sharif University of Technology
    2010
    Abstract
    With the rising penetration of wind power into electric power systems, more accurate and comprehensive studies are required to identify the interaction between wind farm(s) and power system. This requires accurate models of different types of wind turbine-generators. This paper describes modeling and small signal analysis of a grid connected fixed speed wind turbine generator (FSWTG). A complete model of FSWTG is derived and some reduced-order models are deduced. Eigenvalues and participation factors of the system for these models are calculated. Then, using the eigen analysis results, the models are compared and the simplifying assumptions which have been considered in the literatures are... 

    Flow and performance characteristics of twin-entry radial turbine under full and extreme partial admission conditions

    , Article Archive of Applied Mechanics ; Volume 79, Issue 12 , 2009 , Pages 1127-1143 ; 09391533 (ISSN) Hajilouy Benisi, A ; Rad, M ; Shahhosseini, M. R ; Sharif University of Technology
    Abstract
    This paper presents numerical and experimental investigation of the performance and internal flow field characteristics of twin-entry radial inflow turbines at full and extreme partial admission conditions. The turbine is tested on a turbocharger test facility, which was developed for small and medium size turbochargers. Experimental results show that the lowest efficiency corresponds to extreme conditions. Therefore, flow field analyzing is employed to consider these conditions. The flow pattern in the volute and impeller of a twin-entry turbine is analyzed using an in-house fully three-dimensional viscous flow solver. The computational performance results are compared with the experimental... 

    Modeling of twin-entry radial turbine performance characteristics based on experimental investigation under full and partial admission conditions

    , Article Scientia Iranica ; Volume 16, Issue 4 B , 2009 , Pages 281-290 ; 10263098 (ISSN) Hajilouy, A ; Rad, M ; Shahhosseini, M. R ; Sharif University of Technology
    2009
    Abstract
    In this paper, the performance of a turbocharger twin-entry radial inflow turbine is investigated analytically and experimentally under steady state, full and partial admission conditions. In this modeling, the mass flow rate, pressure ratio and efficiency of the turbine are assumed unknown. The turbine geometry and the inlet total pressure and temperature are known, hence, the turbine performance characteristics can be obtained. In the turbocharger laboratory, performance characteristics of the turbine are determined, measuring the main parameters for various operating conditions. Comparing the model and experimental results shows good agreement. Also, considering the effect of test...