Loading...
Search for: turbulent-boundary-layer
0.007 seconds

    Stochastic analysis of nonlinear viscoelastic panels under random excitation

    , Article 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 2003, Norfolk, VA, 7 April 2003 through 10 April 2003 ; 2003 ; 9781624101007 (ISBN) Fazelzadeh, S. A ; Pourtakdoust, S. H ; Assadian, N ; Sharif University of Technology
    2003
    Abstract
    Stochastic behavior of viscoelastic panels in supersonic flow under random aerodynamic pressure and inplane forces is investigated. The governing equations of motion are based on the Von Karman's large deflection equation and are considered with Kelvin's model of viscoelastic structural damping. The panel under study is two dimensional and simply supported for which the first order piston theory is used to account for the unsteady aerodynamic loading. Transformation of the governing partial differential equation to a set of ordinary differential equations is performed through the Galerkin averaging technique. The statistical response moment equations are generated for two modes using the... 

    Stochastic analysis of nonlinear viscoelastic panels under random excitation

    , Article 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Norfolk, VA, 7 April 2003 through 10 April 2003 ; Volume 6 , 2003 , Pages 4219-4225 ; 02734508 (ISSN) Fazelzadeh, S. A ; Pourtakdoust, S. H ; Assadian, N ; Sharif University of Technology
    American Inst. Aeronautics and Astronautics Inc  2003
    Abstract
    Stochastic behavior of viscoelastic panels in supersonic flow under random aerodynamic pressure and in-plane forces is investigated. The governing equations of motion are based on the Von Karman's large deflection equation and are considered with Kelvin's model of viscoelastic structural damping. The panel under study is two dimensional and simply supported for which the first order piston theory is used to account for the unsteady aerodynamic loading. Transformation of the governing partial differential equation to a set of ordinary differential equations is performed through the Galerkin averaging technique. The statistical response moment equations are generated for two modes using the... 

    Separation control of aero boundary layer in supercavitating bodies and its effect on pressure drag reduction

    , Article 2005 ASME Fluids Engineering Division Summer Conference, Houston, TX, 19 June 2005 through 23 June 2005 ; Volume 1 PART A , 2005 , Pages 731-739 ; 0791841987 (ISBN); 9780791841983 (ISBN) Khakpour, Y ; Yazdani, M ; Sharif University of Technology
    2005
    Abstract
    Supercavitation is known as the way of viscous drag reduction for the projectiles, moving in the liquid phase. In recent works, there is distinct investigation between cavitation flow and momentum transfer far away from the cavity surface. In fact such methodologies consider cavitation flow statically, rather than taking dynamic effects of overall flow into account. However, it seems that there is strong connection between overall flow and what takes place in the sheet cavity where a constant pressure distribution is assumed. Thereby, in order to configure the system conditions which may be cause of cavity perturbation and so system oscillation, we need to use proper methodologies in which... 

    Stochastic analysis of two dimensional nonlinear panels with structural damping under random excitation

    , Article Aerospace Science and Technology ; Volume 10, Issue 3 , 2006 , Pages 192-198 ; 12709638 (ISSN) Fazelzadeh, S. A ; Pourtakdoust, S. H ; Assadian, N ; Sharif University of Technology
    2006
    Abstract
    Stochastic behavior of panels in supersonic flow is investigated to assess the significance of including the damping caused by the strains resulting from axial extension of the panel. The governing equations of motion are based on the Von Karman's large deflection equation and are considered with Kelvin's model of structural damping. The panel under study is two dimensional and simply supported for which the first order piston theory is used to account for the unsteady aerodynamic loading. Transformation of the governing partial differential equation to a set of ordinary differential equations is performed through the Galerkin averaging technique. The statistical response moment equations... 

    Investigation of Flow Inside the Pressure Swirl Atomizer

    , Ph.D. Dissertation Sharif University of Technology Kebriaee, Azadeh (Author) ; Nouri Boroujerdi, Ali (Supervisor)
    Abstract
    In the present work, the behavior of flow inside the pressure-swirl atomizers (PSA) is studied by the numerical simulation. The pressure-swirl atomizer is widely used in many industrial applications such as fuel injection in gas turbine, internal combustion engine and liquid-fuel rocket, spray drying, spray in firing and agricultural nozzles.
    The flow simulation inside the injector (PSA) deals with many complicated considerations due to air core formation in the axial zone of the injector as well as high tangential and axial velocities in the swirl chamber. The two phase flow is modeled by level set methods in the pressure swirl atomizer. Moreover, the explicit algebraic Reynolds stress... 

    Numerical Investigation on the Effects of Guide Vanes in Quasi-Radial Wall Jet for Improvement of Separation Control

    , M.Sc. Thesis Sharif University of Technology Rasaienejad, Mostafa (Author) ; Javadi, Khodayar (Supervisor)
    Abstract
    The aim of this study was the performance analysis of the effect of guide vanes in a quasi-radial wall jet to improve the flow separation control on the wing composed of NACA4415. In order to achieve this goal, first, by examining two geometries of "quasi-radial wall jet" and "arced-shape wall jet", the effect of jet's internal flow on separation control improvement has been studied and arced-shape wall jet has been chosen as a suitable replacement for the uniform quasi-radial wall jet, which has changed the radial velocity distribution of the jet output from uniform to non-uniform. Also, increasing the radial component of the jet output velocity and improving the separation control have... 

    Simulation of turbulent swirling flow in convergent nozzles

    , Article Scientia Iranica ; Volume 19, Issue 2 , 2012 , Pages 258-265 ; 10263098 (ISSN) Nouri-Borujerdi, A ; Kebriaee, A ; Sharif University of Technology
    Abstract
    This work simulates the turbulent boundary layer of an incompressible viscous swirling flow through a conical chamber. To model the pressure gradient normal to the wall, the radial and tangential velocity components across the boundary layer have been calculated by both the integral and numerical methods. The numerical solution is accomplished by finite difference, based on the finite volume method. The results show that the radial and tangential boundary layer thicknesses depend on the velocity ratios, Reynolds number and nozzle angle. The peak of radial and tangential boundary layer thicknesses are located at zL≈0.2 and zL≈0.8 from the nozzle inlet, respectively. Due to the short length of... 

    Laminar-turbulent intermittency measurement based on the uncalibrated hot-film data

    , Article Measurement: Journal of the International Measurement Confederation ; Volume 156 , 2020 Akhlaghi, H ; Soltani, M. R ; Maghrebi, M. J ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    A new technique for the laminar-turbulent intermittency measurement based on the surface hot-film data is presented. The existing techniques require data acquired from the calibrated hot-films which leads to the real wall shear stress values. However, calibration of the hot-films is usually very complex. In the proposed method, a technique based on the probability distribution function (PDF) of the acquired data using the uncalibrated hot-film sensors is presented and evaluated. The PDF is prepared for a reduced form of the quasi-wall shear stress value instead of the real shear stress value one. This leads to a standard normal distribution curve for the PDF in the turbulent flow region and... 

    Numerical modeling of turbulent surface wave motion using a coupled boundary element-finite difference technique

    , Article 2008 ASME Fluids Engineering Division Summer Conference, FEDSM 2008, Jacksonville, FL, 10 August 2008 through 14 August 2008 ; Volume 1, Issue PART B , 2009 , Pages 1025-1029 ; 9780791848418 (ISBN) Jamali, M ; Fluids Engineering Division, ASME ; Sharif University of Technology
    2009
    Abstract
    In this paper an effective numerical technique is presented to model turbulent motion of a standing surface wave in a tank. The equations of motion for turbulent boundary layers at the solid surfaces are coupled with the potential flow in the bulk of the fluid, and a mixed BEM-finite difference technique is used to obtain the wave and boundary layer characteristics. A mixing-length theory is used for turbulence modeling. The results are compared with previous experimental data. Although the technique is presented for a standing surface wave, it can be easily applied to other free surface problems. Copyright © 2008 by ASME