Loading...
Search for: turning
0.008 seconds
Total 69 records

    Nonlinear behaviour of the regenerative chatter in turning process with a worn tool: Forced oscillation and stability analysis

    , Article Mechanism and Machine Theory ; Volume 45, Issue 8 , 2010 , Pages 1050-1066 ; 0094114X (ISSN) Moradi, H ; Bakhtiari Nejad, F ; Movahhedy, M. R ; Ahmadian, M. T ; Sharif University of Technology
    2010
    Abstract
    Self-excited and forced vibrations are important topics in machining processes because their occurrence results in poor surface finish, increase in tool wear and reduction of material removal rate. In this paper, turning process is modeled as a single degree of freedom (SDOF) dynamic system including quadratic and cubic structural nonlinearities. The effect of tool flank wear, as a contact force between the workpiece and tool, is addressed vigorously. Multiple scale method is used to find the solution of the nonlinear delay-differential equation including regenerative chatter, forced excitation and tool wear. During the stability analysis, it is shown that width of cut can be considered as... 

    Transformer practical turn-to-turn fault detection performance using negative sequence and space vector-based methods

    , Article 13th International Conference on Protection and Automation of Power System, IPAPS 2019, 8 January 2019 through 9 January 2019 ; 2019 , Pages 1-6 ; 9781728115054 (ISBN) Farzin, N ; Vakilian, M ; Hajipour, E ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Transformer turn-to-turn fault (TTF) is one of the most difficult failures to detect. The negative sequence percentage differential current (NSPD) and extended park vectors approach (EPVA) are the two most promising methods for detection of the TTF inception. In this paper, in order to evaluate the performance of these methods, various experimental tests are carried out to detect the TTF initiation on the winding of the transformer under different operating conditions such as: No-load operation, when an external fault or an open conductor fault is also occurred. The results show that the setting of the proper thresholds plays the main role in the reliable and secure performance of NSPD and... 

    Practical implementation of a new percentage-based turn-to-turn fault detection algorithm to transformer digital differential relay

    , Article International Journal of Electrical Power and Energy Systems ; Volume 121 , 2020 Farzin, N ; Vakilian, M ; Hajipour, E ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Turn-to-turn fault (TTF) is one of the most prominent reasons for transformer failure. This fault typically initiates by involving only a few turns and can progress to a much more severe fault in a very short time. Therefore, it is critical for the transformer protective relays to detect the TTF in the early stages of its occurrence. The conventional differential relays, in general, cannot detect a minor TTF, and thus, a supplementary protective algorithm is usually required to improve the sensitivity of differential relays against TTFs. This paper proposes a percentage-based fault-related incremental currents method for the precise detection of a low-level TTF. The proposed method employs... 

    Optimal gaits generation of a 4-legged walking robot

    , Article Proceedings of 2003 IEEE Conference on Control Applications, Istanbul, 23 June 2003 through 25 June 2003 ; Volume 1 , 2003 , Pages 664-668 Alasty, A ; Borujeni, B. S ; Sharif University of Technology
    2003
    Abstract
    A novel Locomotion and gait planning method for a surface walking/climbing robot based on sequential 4-bar mechanism motions is presented. The robot moves on a surface through decoupled transverse gaits and turning gaits with desired length and angle. For implementation of turning gaits three methods of Simulated Annealing Accurate Planning (SAAP), Gradient Based Planning (GBP) and Hybrid Accurate Planning (HAP) are studied. Where the last method was found the most effective approach  

    Numerical simulation of interaction of mode-coupling and regenerative chatter in machining

    , Article Journal of Manufacturing Processes ; Volume 27 , 2017 , Pages 252-260 ; 15266125 (ISSN) Jafarzadeh, E ; Movahhedy, M. R ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Chatter vibration is a major obstacle in achieving high performance machining. In order to present a realistic model of chatter vibration, in this research, a finite element simulation of orthogonal chip formation combined with a 2D model of machine tool dynamics is developed. The proposed approach has the ability to incorporate various, mostly nonlinear, phenomena affecting chatter occurrence. The dynamic allows the tool to vibrate as a result of chip load variation leading to chatter. The 2DOF model makes it possible to observe the occurrence of model coupling phenomenon, in addition to the regeneration of waviness mechanism. The investigation of mode-coupling and regeneration phenomena in... 

    Development a Numerical Algorithm for Differential Relay for Transformer Protection

    , M.Sc. Thesis Sharif University of Technology Gholami, Mohammad (Author) ; Vakilian, Mehdi (Supervisor)
    Abstract
    The goal of this master thesis is to develop a new accurate numerical algorithm for digital differential relay to protect a power transformer. This work employs specially developed software to simplify its input signal processing task which helps to quickly and accurately detect and clear the transformer internal faults. The available commercial transformer digital differential relays lack the required sensitivity to detect turn to turn faults when a few numbers of turns (less than 10% of the winding) are involved. This work presents a new equivalent circuit for transformer when a turn to turn fault occurs on either winding. This equivalent circuit helped to develop an accurate algorithm for... 

    Turn-to-Turn Fault Detection in Power Transformers in the Presence of Inrush Current

    , M.Sc. Thesis Sharif University of Technology Fallah Mollamahmod, Mahdi (Author) ; Hajipour, Ehsan (Supervisor)
    Abstract
    One of the most critical equipments in power grids are power transformers, which are vulnerable to damage due to the possibility of faults in its various components. A very common category of such faults is turn-to-turn fault in its winding. This fault initiates by the aging of the winding insulation with a short circuit of several adjacent loops to each other and if it is not detected quickly by the transformer protection, it will spread rapidly and can lead to irreparable failure in the transformer. Traditionally, turn-to-turn fault should be detected by mechanical pressure relays, however, due to the poor performance of these relays in the rapid detection of this type of fault, in the... 

    Nonlinear analysis of chatter in turning process using dimensionless groups

    , Article Journal of the Brazilian Society of Mechanical Sciences and Engineering ; Volume 37, Issue 4 , July , 2015 , Pages 1151-1162 ; 16785878 (ISSN) Tavari, H ; Jalili, M. M ; Movahhedy, M. R ; Sharif University of Technology
    Springer Verlag  2015
    Abstract
    A new 3-D nonlinear model of chatter vibration in turning process is presented in this paper. The workpiece is modeled as a rotating clamped-free beam which is excited by cutting forces. π-Buckingham theory is used to extract dimensionless parameters for this problem. Using these parameters, non-dimensional equations of motion are developed. An approximate analytical solution of the nonlinear problem is obtained. A study of the influence of different parameters on the stability results is developed. Using these results, turning velocity intervals for stable and unstable cuts are determined  

    Nonlinear oscillation and stability analysis of the turning process with a worn tool

    , Article Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2009, DETC2009, 30 August 2009 through 2 September 2009 ; Volume 1, Issue PART B , August–September , 2010 , Pages 927-934 ; 9780791848982 (ISBN) Moradi, H ; Ahmadian, M. T ; Bakhtiari Nejad, F ; The Design Engineering Division, ASME; The Computers and Information in Engineering Division, ASME ; Sharif University of Technology
    2010
    Abstract
    Self-excited and forced vibrations are important topics in machining processes because their occurrence results in poor surface finish, increase in tool wear and hampers productivity. In this paper, turning process is modeled as a SDOF dynamic system including quadratic and cubic structural nonlinearities. The effect of tool flank wear, as a contact force between the work-piece and tool, is addressed vigorously. Multiple scale method is used to find the solution of the nonlinear dynamic equation including regenerative chatter, forced excitation and tool wear. It is shown that, width of cut can be considered as the bifurcation parameter of the system. Primary, super-harmonic and sub-harmonic... 

    Nonlinear oscillation and stability analysis of the turning process with a worn tool

    , Article Proceedings of the ASME Design Engineering Technical Conference, 30 August 2009 through 2 September 2009 ; Volume 1, Issue PARTS A AND B , 2009 , Pages 927-934 ; 9780791848982 (ISBN) Moradi, H ; Ahmadian, M. T ; Bakhtiari Nejad, F ; Sharif University of Technology
    Abstract
    Self-excited and forced vibrations are important topics in machining processes because their occurrence results in poor surface finish, increase in tool wear and hampers productivity. In this paper, turning process is modeled as a SDOF dynamic system including quadratic and cubic structural nonlinearities. The effect of tool flank wear, as a contact force between the work-piece and tool, is addressed vigorously. Multiple scale method is used to find the solution of the nonlinear dynamic equation including regenerative chatter, forced excitation and tool wear. It is shown that, width of cut can be considered as the bifurcation parameter of the system. Primary, super-harmonic and sub-harmonic... 

    A single phase transformer equivalent circuit for accurate turn to turn fault modeling

    , Article 24th Iranian Conference on Electrical Engineering, ICEE 2016, 10 May 2016 through 12 May 2016 ; 2016 , Pages 592-597 ; 9781467387897 (ISBN) Gholami, M ; Hajipour, E ; Vakilian, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2016
    Abstract
    Recently, an increasing concern has been raised about turn-to-turn faults (TTFs) in power transformers, because these faults can lead to severe transformer insulation failure and consequently, its outage. Generally, it is impossible to experimentally analyze the transformer behavior under such faults, since the implementation of those experiments may be substantially destructive. Therefore, computer-aided models should be developed to investigate the performance of transformer protective relays under turn-to-turn faults. So far, existing transformer models are mainly formulated to implement in the EMTP-based softwares. However, most of power system protection engineers and researchers... 

    Transformer turn-to-turn fault protection based on fault-related incremental currents

    , Article IEEE Transactions on Power Delivery ; Volume 34, Issue 2 , 2019 , Pages 700-709 ; 08858977 (ISSN) Farzin, N ; Vakilian, M ; Hajipour, E ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Winding turn-to-turn fault (TTF) is one of the most reported reasons for transformer unplanned outage. If its occurrence is not detected at an early stage, it can develop into a costly phase-to-ground fault. In this paper, a novel algorithm based on the fault-related incremental currents is proposed to detect a low-level transformer TTF. This paper shows that the performance of the proposed method is independent of the transformer operating condition. Therefore, it is reliable even under the presence of power system transients such as the external faults. In addition, the proposed algorithm can be configured uniquely and easily. This feature prevents the algorithm from unnecessary trips.... 

    An Accurate Algorithm for Power Transformer Turn to Turn Fault Detection to Enhance the Performance of Differential Relay

    , Ph.D. Dissertation Sharif University of Technology Farzin, Nima (Author) ; Vakilian, Mehdi (Supervisor) ; Hajipour, Ehsan (Co-Supervisor)
    Abstract
    Power transformer is one of the most important equipment in the power system which plays a key role in the reliability and quality of power delivery. Among numerous failure modes of a typical power transformer, the turn-to-turn fault (TTF) is one of the most prominent reasons for its unplanned outage. A turn-to-turn fault quite often begins with the degradation of the winding insulation between two adjacent turns, then in a short time, this low-level fault can progress to a large number of turns and results in the transformer costly damages. Therefore, it is vital to detect TTF at an early stage and prevent its progression to a catastrophic disaster. The conventional percentage differential... 

    Effects of tool rake angle and tool nose radius on surface quality of ultraprecision diamond-turned porous silicon

    , Article Journal of Manufacturing Processes ; Volume 37 , 2019 , Pages 321-331 ; 15266125 (ISSN) Heidari, M ; Akbari, J ; Yan, J ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    This paper presents an investigation of the effects of tool rake angle and nose radius on the surface quality of ultraprecision diamond-turned porous silicon. The results showed that as rake angle decreases, the high-stress field induced by the tool edge increases, causing microcracks to propagate extensively near the pore walls. As a result, the ductile-machined areas shrank under a negative tool rake angle. On the other hand, brittle fracture occurred around pores released cutting pressure significantly. These trends of rake angle effects are distinctly different from those in the cutting of non-porous silicon. Finite element simulation of stress in the cutting area agreed with the... 

    Design and prototyping of a multi-turn sinusoidal air-gap length resolver

    , Article IEEE Transactions on Energy Conversion ; Volume 35, Issue 1 , 2020 , Pages 271-278 Saneie, H ; Nasiri Gheidari, Z ; Tootoonchian, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    Multi-turn resolvers are employed in the applications that high reliability; high accuracy and absolute position measurement are required, simultaneously. They are basically consisted of two individual resolvers in a common frame. In this paper a novel sinusoidal air-gap length multi-turn resolver is proposed. The rotor shape and the winding configuration are designed to achieve single-speed and multi-speed operations using a single rotor and a single stator core. Furthermore, some constraints are laid down and discussed in such a way that the performance of two resolvers has no interference with each other. All the mathematical calculations are validated using time stepping finite element... 

    Applicaton of warrant for Installation of Protected Left-Turn Phase at Signalized Intersections

    , M.Sc. Thesis Sharif University of Technology Kamkari, Mahshid (Author) ; Nassiri, Habibollah (Supervisor)
    Abstract
    Left-turn operation is a critical component in the safe and efficient operation of a signalized intersection. The proper type of left-turn phasing results in reduction of traffic delay and number of accidents. A review of the literature indicates that different warrants have been proposed for the installation of the protected left-turn phase; however, there is not a consensus to implement a specific warrant up to the present. In general, the warrants fall into four categories: traffic volume, operational characteristics of traffic, intersection geometrics and accident experiences. Considering the high rate of accidents resulting from left-turn movements at signalized intersections in Iran,... 

    Ultrasonic Assisted Machining of Metal Matrix Composites

    , M.Sc. Thesis Sharif University of Technology Fakoor, Hamed (Author) ; Movahhedy, Mohammad Reza (Supervisor) ; Akbari, Javad (Supervisor)
    Abstract
    In metal matrix composites, the metal is reinforced with ceramic particles to get appropriate properties for hardness, resistance to fatigue, wear resistance and strength. Aluminum matrix composites have lower density than steels. These kinds of materials are used in military, automotive and aerospace industries due to their high strength to weight ratio and resistance to corrosion and wear. Application development of these materials are limited due to high machining and production costs. High ductility and strength of these materials and also hardness of ceramic particles cause rapid wear of tools and higher roughness of the surface. In this project the effect of ultrasonic vibration of a... 

    Sliding mode control of the turning process for eliminating regenerative chatter in the presence of parametric uncertainties

    , Article ASME International Mechanical Engineering Congress and Exposition, IMECE 2007, Seattle, WA, 11 November 2007 through 15 November 2007 ; Volume 3 , 2008 , Pages 449-456 ; 0791842975 (ISBN); 9780791842973 (ISBN) Moradi, H ; Vossoughi, G. R ; Movahhedy, M. R ; Sharif University of Technology
    2008
    Abstract
    Chatter suppression is an important topic in any type of machining process. In this paper, orthogonal cutting process is modeled as a single degree of freedom dynamic system. A nonlinear delay differential equation is presented that models flank wear of the tool. Uncertainties in cutting velocity, tool wear size and parameters of the dynamic model are included in the model of cutting process. The force provided by a piezo-actuator is taken as the control input of the system. A sliding mode control scheme is used and an effective control law is derived which suppresses the chatter vibration. Results for two distinct cases of a sharp tool and a worn tool are presented and compared which shows... 

    The influence of SiC particles on tool wear in machining of Al/SiC metal matrix composites produced by powder extrusion

    , Article Advanced Materials Research, 18 September 2011 through 21 September 2011, Stuttgart ; Volume 325 , 2011 , Pages 393-399 ; 10226680 (ISSN) ; 9783037852316 (ISBN) Yousefi, R ; Kouchakzadeh, M. A ; Rahiminasab, J ; Kadivar, M. A ; Sharif University of Technology
    2011
    Abstract
    Metal matrix composites (MMCs) have received considerable attention due to their excellent engineering properties. However, poor machinability has been the main deterrent to their substitution for metal parts. The hardness and abrasive nature of reinforcement phase causes rapid tool wear during machining which results in high machining costs. In this study, the effect of SiC particles (5, 15 & 20 percent) on tool wear in turning process is experimentally investigated. Continuous dry turning of Al/SiC particulate metal matrix composite produced by powder metallurgy and utilizing titanium carbide inserts has been achieved as the test method. The influence of machining parameters, e.g. cutting... 

    Spindle speed variation for regenerative chatter suppression in turning process with tool wear effect

    , Article ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010, 12 July 2010 through 14 July 2010 ; Volume 4 , 2010 , Pages 619-626 ; 9780791849187 (ISBN) Haji Hajikolaei, K ; Vossoughi, G ; Rahaeifard, M ; Movahhedy, M ; ASME Turkey Section ; Sharif University of Technology
    Abstract
    Chatter suppression in machining processes results in more material removal rate, high precision and surface quality. In this paper, a single degree of freedom model of orthogonal turning process is used to set up the delay differential equation of motion with considering the tool wear effect as a contact force between the workpiece and tool flank surfaces. Sinusoidal spindle speed variations with different frequencies around the mean speed are modulated to disturb the regenerative mechanism. The optimal amplitudes of the speed modulations are found based on a genetic algorithm such that the input energy to the turning process is minimized. Results of the stability analysis and the...