Search for: two-dimensional-finite-element-analysis
0.005 seconds

    Finite element modeling of thermal and mechanical stresses in work-rolls of warm strip rolling process

    , Article Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture ; Volume 230, Issue 6 , 2016 , Pages 1076-1086 ; 09544054 (ISSN) Koohbor, B ; Sharif University of Technology
    SAGE Publications Ltd 
    An integrated mathematical model was developed to study the thermo-mechanical behavior of strips and work-rolls during warm rolling process of steels. A two-dimensional finite element analysis was first employed to solve for the thermo-mechanical response of the rolled strip under steady-state conditions. The calculated roll pressure and temperature fields were then used to apply proper boundary conditions for solving the governing thermo-mechanical problem for the work-roll. The obtained results indicate that in warm strip rolling of steels, the thermal and mechanical stresses developed within the work-roll are comparable; however, the more significant influence is due to heating and... 

    Prediction of thermal stresses and temperature field in work rolls during hot strip rolling process

    , Article Materials Science and Technology ; Volume 26, Issue 3 , 2010 , Pages 343-351 ; 02670836 (ISSN) Sonboli, A ; Serajzadeh, S ; Sharif University of Technology
    In this work, a combined finite element analysis and upper bound technique is employed to assess temperature field and thermal stress distribution within the work rolls during continuous hot strip rolling process. Two-dimensional finite element analysis is utilised to simultaneously predict temperature fields within the rolling metal and the work roll as well as thermal stresses in the work rolls. In order to calculate the velocity field and the rate of heat of deformation, an upper bound solution is coupled with the employed finite element analysis. The utilised model makes it possible to estimate the effects of different parameters such as idling revolutions and initial temperature on... 

    An upper-bound finite element solution for rolling of stainless steel 304L under warm and hot deformation conditions

    , Article Multidiscipline Modeling in Materials and Structures ; Volume 12, Issue 3 , 2016 , Pages 514-533 ; 15736105 (ISSN) Pourabdollah, P ; Serajzadeh, S ; Sharif University of Technology
    Emerald Group Publishing Ltd 
    Purpose: The purpose of this paper is to investigate the thermomechanical behavior of stainless steel AISI 304L during rolling at elevated temperatures. Design/methodology/approach: Two-dimensional finite element analysis together with the upperbound solution were used for predicting temperature field and required power in warm and hot rolling operations. The required power and heat of deformation were estimated employing an upper-bound solution based on cylindrical velocity field and at the same time, temperature distributions within the rolling steel and the work rolls were determined by means of a thermal finite element analysis. To consider the effect of flow stress and its dependence on... 

    A study on deformation behavior of 304L stainless steel during and after plate rolling at elevated temperatures

    , Article Journal of Materials Engineering and Performance ; Volume 26, Issue 2 , 2017 , Pages 885-893 ; 10599495 (ISSN) Pourabdollah, P ; Serajzadeh, S ; Sharif University of Technology
    Springer New York LLC  2017
    In this work, microstructural evolutions and mechanical properties of AISI 304L stainless steel were studied after rolling operations at elevated temperatures. Rolling experiments were conducted under warm and hot rolling conditions in the range of 600-1000 °C employing different reductions. Then, the developed microstructures and the mechanical properties of the steel were evaluated by means of uniaxial tensile testing, metallographic observations, and x-ray diffraction method. Besides, two-dimensional finite element analysis coupled with artificial neural network modeling was developed to assess thermo-mechanical behavior of the steel during and after rolling. The results show that... 

    Modeling of heat transfer during controlled cooling in hot rod rolling of carbon steels

    , Article Applied Thermal Engineering ; Volume 31, Issue 4 , 2011 , Pages 487-492 ; 13594311 (ISSN) Nobari, A. H ; Serajzadeh, S ; Sharif University of Technology
    A mathematical model is developed to predict temperature variations and austenite phase transformation kinetics in steel rods and wires during controlled cooling after hot rolling. Two-dimensional finite element analysis is employed to solve the governing heat conduction equation with non-uniform boundary conditions as it is subjected in practical cooling layout. The kinetics of austenite transformation is also determined using the cooling curves achieved from the thermal analysis together with the additivity rule. To verify the model results, temperature profiles in steel rods cooled under different conditions are measured experimentally in laboratory and also, temperature history during...