Loading...
Search for: two-fluid
0.007 seconds

    Numerical simulation of two-phase flow in airlift pumps using the Physical Influence Scheme

    , Article Progress in Computational Fluid Dynamics ; Volume 10, Issue 3 , 2010 , Pages 186-194 ; 14684349 (ISSN) Hanafizadeh, P ; Saidi, M. H ; Darbandi, M ; Kebriaee, A ; Sharif University of Technology
    2010
    Abstract
    A new approach has been presented to solve gas-liquid flow numerically in vertical pipes of air-lift pumps. To improve modelling, a new strategy has been employed with the capability of coupling the continuity and momentum equations and enforcing the role of pressure directly in the continuity equation. This is achieved via applying a novel scheme called the Physical Influence Scheme (PIS). The current finite volume solution is compared with other available numerical solutions. Indeed, they are in fair agreement. However, the present predictions are far superior to those obtained from an existing simple method, which is widely used in airlift pump modelling  

    Modeling and Simulation of Solid Circulation Pattern in Gas-Solid Fluidized Beds

    , M.Sc. Thesis Sharif University of Technology Yazdanpanah, Shahram (Author) ; Molaei Dehkordi, Asghar (Supervisor)
    Abstract
    In this work solid circulation pattern in 2-D gas-solid fluidized beds has been investigated carefully. In this regard TFM approach was used. In addition KTGF was applied along with Gidaspow drag model. A commercial CFD software (ANSYS FLUENT 15.0) was used to simulate the hydrodynamics of the bed. Effects of a number of operating and design parameters on the solid circulation pattern were examined in detail. These parameters were gas velocity, restitution coefficient, pressure, solid density, temperature and vertical plates. The simulation results were validated against experimental data reported in the literature. Furthermore, the solid vertical velocity was investigated carefully  

    The quenching of silver rod in boiling carbon nano tube-water nanofluid

    , Article International Journal of Thermal Sciences ; Volume 75 , 2014 , Pages 95-104 ; ISSN: 12900729 Habibi Khoshmehr, H ; Saboonchi, A ; Shafii, M. B ; Sharif University of Technology
    Abstract
    It is well established that nanofluids increase or decrease heat transfer in boiling phenomenon. The study acquired Quenching curve and boiling curve in two different surface roughnesses in two fluids: deionized water and the nanofluid MWCNT-water with four different concentrations. The cylinder was made of silver and two surface roughnesses of 129 and 690 nm. It was heated up and soaked in the fluid mentioned above. Temperature was recorded by a drilled to install thermocouple. The experiment was replicated in five times. To calculate the heat transfer quotient, assuming the cylinder to be thermally homogeneous, the Lumped capacity method was applied. The obtained results during quenching... 

    Numerical simulation of two-phase flow in airlift pumps using the Physical Influence Scheme

    , Article Progress in Computational Fluid Dynamics ; Volume 10, Issue 3 , 2010 , Pages 186-194 ; 14684349 (ISSN) Hanafizadeh, P ; Saidi, M. H ; Darbandi, M ; Kebriaee, A ; Sharif University of Technology
    2010
    Abstract
    A new approach has been presented to solve gas-liquid flow numerically in vertical pipes of air-lift pumps. To improve modelling, a new strategy has been employed with the capability of coupling the continuity and momentum equations and enforcing the role of pressure directly in the continuity equation. This is achieved via applying a novel scheme called the Physical Influence Scheme (PIS). The current finite volume solution is compared with other available numerical solutions. Indeed, they are in fair agreement. However, the present predictions are far superior to those obtained from an existing simple method, which is widely used in airlift pump modelling  

    Geometry effects in Eulerian/Granular simulation of a turbulent FCC riser with a (kg-g)-KTGF model

    , Article International Journal of Chemical Reactor Engineering ; Volume 8 , 2010 ; 15426580 (ISSN) Nazif, H. R ; Basirat Tabrizi, H ; Farhadpour, F. A ; Sharif University of Technology
    Abstract
    Three-dimensional, transient turbulent particulate flow in an FCC riser is modeled using an Eulerian/Granular approach. The turbulence in the gas phase is described by a modified realizable (kg-g) closure model and the kinetic theory of granular flow (KTGF) is employed for the particulate phase. Separate simulations are conducted for a rectangular and a cylindrical riser with similar dimensions. The model predictions are validated against experimental data of Sommerfeld et al (2002) and also compared with the previously reported LES-KTGF simulations of Hansen et al (2003) for the rectangular riser. The (kg-g)-KTGF model does not perform as well as the LES-KTGF model for the riser with a... 

    Layers from initial Rayleigh density profiles by directed nonlinear force driven plasma blocks for alternative fast ignition

    , Article Laser and Particle Beams ; Volume 27, Issue 1 , 2009 , Pages 149-156 ; 02630346 (ISSN) Yazdani, E ; Cang, Y ; Sadighi Bonabi, R ; Hora, H ; Osman, F ; Sharif University of Technology
    2009
    Abstract
    Measurement of extremely new phenomena during the interaction of laser pulses with terawatt and higher power and picoseconds with plasmas arrived at drastically different anomalies in contrast to the usual observations if the laser pulses were very clean with a contrast ratio higher than 108. This was guaranteed by the suppression of prepulses during less than dozens of ps before the arrival of the main pulse resulting in the suppression of relativistic self-focusing. This anomaly was confirmed in many experimental details, and explained and numerically reproduced as a nonlinear force acceleration of skin layers generating quasi-neutral plasma blocks with ion current densities above 1011... 

    Simulation of Two-Fluid Flow Through Particlulate Porous Media Contaning Moving Particles at Pore Scale Using Combined LB-DE Method

    , Ph.D. Dissertation Sharif University of Technology Ghassemi, Ali (Author) ; Pak, Ali (Supervisor)
    Abstract
    A considerable number of engineering applications deal with flow of fluid(s) through particulate porous media. For certain engineering problems, fluid flow may displace and even dislodge the solid particles from the mass where a fluid-particle flow occurs. The complexity of involving processes which should be studied at the scale of moving particles transforms the analyses of these problems towards a difficult engineering task. Characteristics of solid grains such as size and shape and properties of the flowing fluid(s) such as viscosity and surface tension play essential roles in the behavior of fluid-particle systems. Also, when fluid flows through porous media, secondary processes such as... 

    Dielectric magnifying of plasma blocks by nonlinear force acceleration with delayed electron heating

    , Article Physics of Plasmas ; Volume 17, Issue 11 , 2010 ; 1070664X (ISSN) Sadighi Bonabi, R ; Yazdani, E ; Cang, Y ; Hora, H ; Sharif University of Technology
    2010
    Abstract
    Specific studies were performed in order to increase the thickness of laser generated directed space charge quasineutral plasma blocks with anomalously high ion current densities above 1011 A/ cm2. This may lead to an alternative scheme of laser driven fusion with the irradiation of petawatt-picosecond laser pulses. Initial electron densities were used with Rayleigh profiles, because these are unique for inhomogeneous plasmas for undistorted acceleration at very low reflectivity until thermal absorption processes disturb these ideal conditions. Numerical hydrodynamic results based on a genuine two-fluid code are presented to optimize the block generation for possible fast ignition and... 

    The effect of non-uniform magnetic field on the efficiency of mixing in droplet-based microfluidics: a numerical investigation

    , Article Micromachines ; Volume 13, Issue 10 , 2022 ; 2072666X (ISSN) Rezaeian, M ; Nouri, M ; Hassani Gangaraj, M ; Shamloo, A ; Nasiri, R ; Sharif University of Technology
    MDPI  2022
    Abstract
    Achieving high efficiency and throughput in droplet-based mixing over a small characteristic length, such as microfluidic channels, is one of the crucial parameters in Lab-on-a-Chip (LOC) applications. One solution to achieve efficient mixing is to use active mixers in which an external power source is utilized to mix two fluids. One of these active methods is magnetic micromixers using ferrofluid. In this technique, magnetic nanoparticles are used to make one phase responsive to magnetic force, and then by applying a magnetic field, two fluid phases, one of which is magneto-responsive, will sufficiently mix. In this study, we investigated the effect of the magnetic field’s characteristics... 

    Theoretical and Experimental Investigation of Particle Size Distribution in a Tapered Fluidized Bed for TiO2

    , Ph.D. Dissertation Sharif University of Technology Rasteh, Mojtaba (Author) ; Farhadi, Fathollah (Supervisor) ; Bahramian, Alireza (Co-Advisor)
    Abstract
    This dissertation discusses the development of dimensionless correlations for predicting hydrodynamic parameters and CFD simulation of gas-solid two phase flow in conical fluidized beds. This research mainly focuses on the impact of particle size distribution on hydrodynamic parameters. The first section describes the experiments that were carried out with a number of gas–solid systems in a conical column to study certain important characteristics of the fluidized bed. Generalized empirical correlations, based on dimensionless analysis, have been developed in order to predict minimum fluidization velocity, minimum velocity of full fluidization, maximum pressure drop and bed expansion ratios.... 

    Efficiency Evaluation of R-K Model for Modeling Two-phase Flow in Porous Media Using Lattice Boltzmann Method

    , M.Sc. Thesis Sharif University of Technology Sadeghi, Mohammad (Author) ; Pak, Ali (Supervisor)
    Abstract
    Flows in porous media exist in many practical and research fields including water flow in soil, transport of pollution in soil, oil recovery engineering, and etc. Studying the multi-phase flows seems being too complex due to the interactions between fluids or between fluid and media in the porous media, wetting tendency of fluids, intrinsic permeability of the porous media, tortuosity of the flow’s path and etc. Hence, the field and laboratory studies of multi-phase flows is difficult, if not impossible. While numerical methods can handle many of these complexities, many of them are unable to simulate the micro-scale flows. On contrary, Lattice Boltzmann has no such shortcomings and even is... 

    Simulation of Solids Mixing Process in Tapered Fluidized Beds

    , M.Sc. Thesis Sharif University of Technology Mardanloo, Peyman (Author) ; Molaei Dehkordi, Asghar (Supervisor)
    Abstract
    There is extensive use of solid-gas fluidized beds in the petrochemical, energy, chemical, and metallurgical industries. They provide fast heat- and mass-transfer because of the good mixing of solids. Tapered fluidized beds (TFBR) are more appropriate for this type of particle because they have axial velocity changes. This feature allows large particles to remain at the bottom of the bed and fine particles near the bed surface. In this work, the process of the solids mixing in a two-dimensional tapered fluidized bed with a bottom diameter of0/07 m and a height of 0.7 m was studied using computational fluid dynamics (CFD) techniques and applying a two-fluid model approach. The solids mixing... 

    Numerical investigation on the solid flow pattern in bubbling gas-solid fluidized beds: Effects of particle size and time averaging

    , Article Powder Technology ; Vol. 264, issue , September , 2014 , p. 466-476 Askarishahi, M ; Salehi, M. S ; Molaei Dehkordi, A ; Sharif University of Technology
    Abstract
    The effects of particle size on the solid flow pattern in gas-solid bubbling fluidized beds were investigated numerically using two-fluid model based on the kinetic theory of granular flow. In this regard, the set of governing equations was solved using finite volume method in two-dimensional Cartesian coordinate system. Glass bead particles with mean sizes of 880. μm, 500. μm, and 351. μm were fluidized by air flow at excess gas velocities of 0.2. m/s and 0.4. m/s. For particle diameters of 880 and 351. μm, the predicted characteristic times for solid dispersion were 0.14. s and 0.15. s, respectively, while characteristic times for solid diffusivity were 1.68. ms and 0.75. ms in the same... 

    On the motion of Newtonian and non-Newtonian liquid drops

    , Article Scientia Iranica ; Volume 19, Issue 5 , 2012 , Pages 1265-1278 ; 10263098 (ISSN) Aminzadeh, M ; Maleki, A ; Firoozabadi, B ; Afshin, H ; Sharif University of Technology
    2012
    Abstract
    In the present study, the motion of Newtonian and non-Newtonian liquid drops has been investigated experimentally. In order to investigate the effect of bulk fluid on drops, we have used water and air, as two fluids with different properties, and various industrial and biological applications. Image processing is utilized to analyze the images obtained by a high speed camera. The research has been separated into two parts. The first part has been devoted to the experiments in which air is the bulk fluid, and the second is related to the experiment carried out in water. The range of Reynolds number is, approximately, 50

    Temperature tunable random laser using superconducting materials

    , Article Optics Communications ; Volume 285, Issue 7 , 2012 , Pages 1900-1904 ; 00304018 (ISSN) Ghasempour Ardakani, A ; Hosseini, M ; Bahrampour, A. R ; Mahdavi, S. M ; Sharif University of Technology
    2012
    Abstract
    We propose that spectral intensity of superconductor based random lasers can be made tunable by changing temperature. The two fluid model and wavelength dependent dispersion formula have been employed to describe the optical response of the superconducting materials. Random laser characteristics have been calculated using the one dimensional FDTD method. Our simulation results reveal that the emission spectrum can be manipulated through the ambient temperature of the system. It is observed that transition from metal phase to pure superconducting phase leads to the enhancement of the laser emission. Furthermore, spatial distribution of the fields in one dimensional disordered media is very... 

    Simulation of 3D freely bubbling gas-solid fluidized beds using various drag models: TFM approach

    , Article Chemical Engineering Research and Design ; Volume 100 , 2015 , Pages 377-390 ; 02638762 (ISSN) Askaripour, H ; Molaei Dehkordi, A ; Sharif University of Technology
    Institution of Chemical Engineers  2015
    Abstract
    In this article, 3D modeling and simulation of bubbling fluidized beds has been conducted using various drag models, and the model predictions were validated against reported experimental data and 2D simulation results. In this regard, different drag models reported in the literature including Gidaspow, Syamlal-O'Brien, Hill-Koch-Ladd, and Wen-Yu were applied. A standard Two-Fluid Model (TFM) closed by the Kinetic Theory of Granular Flows (KTGF) was used to simulate bubbling gas-solid fluidized beds. Excellent agreements between the simulation results and experimental data, concerning bed expansion ratio, gas volume fraction, and time-averaged particles velocity, were found over a wide range... 

    Numerical simulation of orifice cavitating flows using two-fluid and three-fluid cavitation models

    , Article Numerical Heat Transfer; Part A: Applications ; Volume 58, Issue 6 , Sep , 2010 , Pages 505-526 ; 10407782 (ISSN) Darbandi, M ; Sadeghi, H ; Sharif University of Technology
    2010
    Abstract
    A number of numerical simulations is carried out to study the turbulent cavitating flow through an orifice. We use two different two-fluid (consisting of two interpenetrating liquid and vapor phases) and three-fluid (consisting of three liquid, vapor, and non-condensable gas phases) cavitation models to extend our study. We use the finite-volume method to solve the multiphase flow governing equations, the SIMPLEC algorithm to link the pressure and velocity equations, and the standard k- model to treat the turbulence closure problem. We fix the outlet pressure and change the inlet pressure suitably in our simulations. The discharge coefficient values obtained by the two chosen models are... 

    Hydro-mechanical modeling of two-phase fluid flow in deforming, partially saturated porous media with propagating cohesive cracks using the extended finite element method

    , Article Computational Plasticity XI - Fundamentals and Applications, COMPLAS XI, 7 September 2011 through 9 September 2011 ; September , 2011 , Pages 1516-1527 ; 9788489925731 (ISBN) Mohammadnejad, T ; Khoei, A. R ; Sharif University of Technology
    Abstract
    In the present paper, a fully coupled numerical model is developed for the hydromechanical analysis of deforming, progressively fracturing porous media interacting with the flow of two immiscible, compressible wetting and non-wetting pore fluids. The governing equations involving the coupled two-phase fluid flow and deformation processes in partially saturated porous media containing cohesive cracks are derived within the framework of the generalized Biot theory. The displacement of the solid phase, the pressure of the wetting phase and the capillary pressure are taken as the primary unknowns of the three-phase formulation. A softening cohesive law is employed to describe the nonlinear...