Loading...
Search for: ultraviolet-rays
0.006 seconds

    UV-prepared salep-based nanoporous hydrogel for controlled release of tetracycline hydrochloride in colon

    , Article Journal of Photochemistry and Photobiology B: Biology ; Volume 102, Issue 3 , March , 2011 , Pages 232-240 ; 10111344 (ISSN) Bardajee, G. R ; Pourjavadi, A ; Ghavami, S ; Soleyman, R ; Jafarpour, F ; Sharif University of Technology
    2011
    Abstract
    A highly swelling nanoporous hydrogel (NPH) was synthesized via UV-irradiation graft copolymerization of acrylic acid (AA) onto salep backbone and its application as a carrier matrix for colonic delivery of tetracycline hydrochloride (TH) was investigated. Optimized synthesis of the hydrogel was performed by the classic method. The swelling behavior of optimum hydrogel was measured in different media. The hydrogel formation was confirmed by Fourier transform infrared spectroscopy (FTIR) and thermo-gravimetric analysis (TGA/DTG/DTA). The study of the surface morphology of hydrogels using SEM showed a nanoporous (average pore size: about 350 nm) structure for the sample obtained under... 

    Optimization of operating parameters for efficient photocatalytic inactivation of Escherichia coli based on a statistical design of experiments

    , Article Water Science and Technology ; Volume 71, Issue 6 , 2015 , Pages 823-831 ; 02731223 (ISSN) Feilizadeh, M ; Alemzadeh, I ; Delparish, A ; Karimi Estahbanati, M. R ; Soleimani, M ; Jangjou, Y ; Vosoughi, A ; Sharif University of Technology
    IWA Publishing  2015
    Abstract
    In this work, the individual and interaction effects of three key operating parameters of the photocatalytic disinfection process were evaluated and optimized using response surface methodology (RSM) for the first time. The chosen operating parameters were: reaction temperature, initial pH of the reaction mixture and TiO2 P-25 photocatalyst loading. Escherichia coli concentration, after 90 minutes irradiation of UV-A light, was selected as the response. Twenty sets of photocatalytic disinfection experiments were conducted by adjusting operating parameters at five levels using the central composite design. Based on the experimental data, a semi-empirical expression was established and applied... 

    Combined UV-C/H2O2-VUV processes for the treatment of an actual slaughterhouse wastewater

    , Article Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes ; Volume 52, Issue 5 , 2017 , Pages 314-325 ; 03601234 (ISSN) Vaezzadeh Naderi, K ; Bustillo Lecompte, C. F ; Mehrvar, M ; Abdekhodaie, M. J ; Sharif University of Technology
    Taylor and Francis Inc  2017
    Abstract
    In this study, a three-factor, three-level Box-Behnken design with response surface methodology were used to maximize the TOC removal and minimize the H2O2 residual in the effluent of the combined UV-C/H2O2-VUV system for the treatment of an actual slaughterhouse wastewater (SWW) collected from one of the meat processing plants in Ontario, Canada. The irradiation time and the initial concentrations of total organic carbon (TOCo) and hydrogen peroxide (H2O2o) were the three predictors, as independent variables, studied in the design of experiments. The multiple response approach was used to obtain desirability response surfaces at the optimum factor settings. Subsequently, the optimum... 

    TiO2 nanofibre assisted photocatalytic degradation of reactive blue 19 dye from aqueous solution

    , Article Environmental Technology ; Volume 30, Issue 3 , 2009 , Pages 233-239 ; 09593330 (ISSN) Rezaee, A ; Ghaneian, M. T ; Taghavinia, N ; Khajeh Aminian, M ; Hashemian, S. J ; Sharif University of Technology
    2009
    Abstract
    The photocatalytic degradation of Reactive Blue 19 (RB19) dye has been studied using TiO2 nanofibre as the photocatalyst in aqueous solution under UV irradiation. Titanium dioxide nanofibre was prepared using a templating method with tetraisopropylorthotitanate as a precursor. The experiments were carried out in the presence of the TiO2 nanofibre, and the effects of pH and electron acceptors on the degradation process were investigated. In order to observe the quality of the aqueous solution, chemical oxygen demand (COD) measurements were also carried out before and after the treatments. The photocatalytic decomposition of RB19 was most efficient in acidic solution. With the addition of... 

    Highly efficient of molybdenum trioxide-cadmium titanate nanocomposites for ultraviolet light photocatalytic and antimicrobial application: Influence of reactive oxygen species

    , Article Journal of Photochemistry and Photobiology B: Biology ; Volume 191 , 2019 , Pages 75-82 ; 10111344 (ISSN) Zhu, J. M ; Hosseini, M ; Fakhri, A ; Salari Rad, S ; Hadadi, T ; Nobakht, N ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In the present work we report the enhanced UV light photocatalytic performance of cadmium titanate photocatalyst by MoO 3 for Drug pollutant degradation. The nano photocatalyst sample was synthesized employing the Pechini-ultrasonic-hydrothermal route. Therefore, the nano photocatalyst were characterized by various analytical devices. The wide scan X-ray photoelectron spectral study confirmed the MoO 3 in the CdTiO 3 matrix. The crystallite size calculated with the Debye-Scherrer equation (55.4, 57.0, 61.2 and 63.1 nm for pure CdTiO 3 , MoCdTi-0, MoCdTi-1, and MoCdTi-2 nanocomposites, respectively). SEM micrographs revealed nanowire morphology indicated the crystalline nature of the sample.... 

    Transition metal ions effect on the properties and photocatalytic activity of nanocrystalline TiO2 prepared in an ionic liquid

    , Article Journal of Hazardous Materials ; Volume 172, Issue 2-3 , 2009 , Pages 1573-1578 ; 03043894 (ISSN) Ghasemi, S ; Rahimnejad, S ; Setayesh, S. R ; Rohani, S ; Gholami, M. R ; Sharif University of Technology
    Abstract
    TiO2 and transition metal (Cr, Mn, Fe, Co, Ni, Cu, and Zn) doped TiO2 nanoparticles were synthesized by the sol-gel method using 2-hydroxylethylammonium formate as an ionic liquid. All the prepared samples were calcined at 500 °C and characterized by X-ray diffraction (XRD), BET surface area determination, energy dispersive X-ray (EDX) analysis, diffuse reflectance spectroscopy (DRS), and Fourier transformed infrared (FT-IR) techniques. The studies revealed that transition metal (TM) doped nanoparticles have smaller crystalline size and higher surface area than pure TiO2. Dopant ions in the TiO2 structure caused significant absorption shift into the visible region. The results of...