Loading...
Search for: umbilical-cord-blood
0.006 seconds

    Stem Cell Culture in Bioreactor

    , M.Sc. Thesis Sharif University of Technology Hosseini Zand, Hasti (Author) ; Abdekhodaie, Mohammad Jafar (Supervisor) ; Ebrahimi, Marziye (Supervisor) ; Yaghmaei, Soheyla (Co-Advisor)
    Abstract
    Static culture systems, such as well-plates, T-Flasks and gas-permeable blood bags are restricted by their limited number of hematopoietic stem cells (HSCs) available. Hence, stirred culture systems are alternative options due to their appropriate culture conditions. Ex-vivo expansion of HSCs in suspension bioreactors has been successfully developed in recent years. The purpose of this study is comparing HSCs expansion in bioreactor with reciprocating impeller and static culture, investigation the effect of rotational speed changes in suspension culture on HSCs expansion and comparing the expansion potential of static and suspension cultures with rotational movement.
    Expansion of... 

    Graphene nanogrids for selective and fast osteogenic differentiation of human mesenchymal stem cells

    , Article Carbon ; Volume 59 , 2013 , Pages 200-211 ; 00086223 (ISSN) Akhavan, O ; Ghaderi, E ; Shahsavar, M ; Sharif University of Technology
    2013
    Abstract
    Graphene nanogrids (fabricated by graphene nanoribbons obtained through oxidative unzipping of multi-walled carbon nanotubes) were used as two-dimensional selective templates for accelerated differentiation of human mesenchymal stem cells (hMSCs), isolated from umbilical cord blood, into osteogenic lineage. The biocompatible and hydrophilic graphene nanogrids showed high actin cytoskeleton proliferations coinciding with patterns of the nanogrids. The amounts of proliferations were found slightly better than proliferation on hydrophilic graphene oxide (GO) sheets, and significantly higher than non-uniform proliferations on hydrophobic reduced graphene oxide (rGO) sheets and... 

    Genotoxicity of graphene nanoribbons in human mesenchymal stem cells

    , Article Carbon ; Volume 54 , 2013 , Pages 419-431 ; 00086223 (ISSN) Akhavan, O ; Ghaderi, E ; Emamy, H ; Akhavan, F ; Sharif University of Technology
    2013
    Abstract
    Single-layer reduced graphene oxide nanoribbons (rGONRs) were obtained through an oxidative unzipping of multi-walled carbon nanotubes and a subsequent deoxygenation by hydrazine and bovine serum albumin. Human mesenchymal stem cells (hMSCs) were isolated from umbilical cord blood and used for checking the concentration- and time-dependent cyto- and geno-toxic effects of the rGONRs and reduced graphene oxide sheets (rGOSs). The cell viability assay indicated significant cytotoxic effects of 10 μg/mL rGONRs after 1 h exposure time, while the rGOSs exhibited the same cytotoxicity at concentration of 100 μg/mL after 96 h. The oxidative stress was found as the main mechanism involved in the... 

    Size-dependent genotoxicity of graphene nanoplatelets in human stem cells

    , Article Biomaterials ; Volume 33, Issue 32 , 2012 , Pages 8017-8025 ; 01429612 (ISSN) Akhavan, O ; Ghaderi, E ; Akhavan, A ; Sharif University of Technology
    2012
    Abstract
    Reduced graphene oxide nanoplatelets (rGONPs) were synthesized by sonication of covalently PEGylated GO sheets followed by a chemical reduction using hydrazine and bovine serum albumin. Human mesenchymal stem cells (hMSCs), as a fundamental factor in tissue engineering, were isolated from umbilical cord blood (as a recently proposed source for extracting fresh hMSCs) to investigate, for the first time, the size-dependent cyto- and geno-toxic effects of the rGONPs on the cells. The cell viability test showed significant cell destructions by 1.0 μg/mL rGONPs with average lateral dimensions (ALDs) of 11±4 nm, while the rGO sheets with ALDs of 3.8±0.4 μm could exhibit a significant cytotoxic...