Loading...
Search for: uniform-lagrange-interpolation
0.011 seconds

    Equivalence of the Lagrange interpolator for uniformly sampled signals and the scaled binomially windowed shifted sinc function

    , Article Digital Signal Processing: A Review Journal ; Volume 19, Issue 5 , 2009 , Pages 838-842 ; 10512004 (ISSN) Jahani Yekta, M. M ; Sharif University of Technology
    2009
    Abstract
    The maximally flat (MF) fractional delay (FD) filter which is in fact a Lagrange interpolator for uniformly sampled signals, has previously been shown to be equal to the scaled binomially windowed shifted version of the sinc function; the ideal interpolation kernel for band-limited signals. In this paper, another proof for this equivalence is presented. Unlike its counterparts available in the literature, the proof given here is neither strictly algebraic, nor deploys the explicit coefficient formulas of the MFFD filter. It follows a frequency domain approach based on the definition of this filter instead, and aims to provide more insight into the corresponding equivalence. © 2009 Elsevier... 

    Equivalence of the Lagrange interpolator for uniformly sampled signals and the scaled binomially windowed shifted sinc function

    , Article Digital Signal Processing: A Review Journal ; Volume 19, Issue 5 , 2009 , Pages 838-842 ; 10512004 (ISSN) Jahani Yekta, M. M ; Sharif University of Technology
    2009
    Abstract
    The maximally flat (MF) fractional delay (FD) filter which is in fact a Lagrange interpolator for uniformly sampled signals, has previously been shown to be equal to the scaled binomially windowed shifted version of the sinc function; the ideal interpolation kernel for band-limited signals. In this paper, another proof for this equivalence is presented. Unlike its counterparts available in the literature, the proof given here is neither strictly algebraic, nor deploys the explicit coefficient formulas of the MFFD filter. It follows a frequency domain approach based on the definition of this filter instead, and aims to provide more insight into the corresponding equivalence. © 2009 Elsevier...