Loading...
Search for: unsteady-conditions
0.005 seconds

    Collective dynamics of interacting particles in unsteady flows

    , Article SIAM Journal on Applied Dynamical Systems ; Vol. 13, Issue. 1 , 2014 , pp. 194-209 ; ISSN: 15360040 Abedi, M ; Jalali, M. A ; Sharif University of Technology
    Abstract
    We use the Fokker-Planck equation and its moment equations to study the collective behavior of interacting particles in unsteady one-dimensional flows. Particles interact according to a longrange attractive and a short-range repulsive potential field known as Morse potential. We assume Stokesian drag force between particles and their carrier fluid and find analytic single-peaked traveling solutions for the spatial density of particles in the catastrophic phase. In steady flow conditions the streaming velocity of particles is identical to their carrier fluid, but we show that particle streaming is asynchronous with an unsteady carrier fluid. Using linear perturbation analysis, the stability... 

    Experimental study of the boundary layer over an airfoil in plunging motion

    , Article Acta Mechanica Sinica/Lixue Xuebao ; Volume 28, Issue 2 , 2012 , Pages 372-384 ; 05677718 (ISSN) Rasi Marzabadi, F ; Soltani, M. R ; Sharif University of Technology
    Abstract
    This is an experimental study on the boundary layer over an airfoil under steady and unsteady conditions. It specifically deals with the effect of plunging oscillation on the laminar/turbulent characteristics of the boundary layer. The wind tunnel measurements involved surface-mounted hot-film sensors and boundary-layer rake. The experiments were conducted at Reynolds numbers of 0.42×10 6 to 0.84 × 10 6 and the reduced frequency was varied from 0.01 to 0.11. The results of the quasi-wall-shear stress as well as the boundary layer velocity profiles provided important information about the state of the boundary layer over the suction surface of the airfoil in both static and dynamic cases. For... 

    Numerical simulation of turbulent unsteady compressible pipe flow with heat transfer in the entrance region

    , Article International Conference 'Turbulent Mixing and Beyond', Trieste, 18 August 2007 through 26 August 2007 ; Volume T132 , December , 2008 ; 02811847 (ISSN) Ziaei Rad, M ; Nouri Broujerdi, A ; Sharif University of Technology
    2008
    Abstract
    In this paper, the compressible gas flow through a pipe subjected to wall heat flux in unsteady condition in the entrance region is investigated numerically. The coupled conservation equations governing turbulent compressible viscous flow in the developing region of a pipe are solved numerically under different thermal boundary conditions. The numerical procedure is a finite-volume-based finite-element method applied to unstructured grids. The convection terms are discretized by the well-defined Roe method, whereas the diffusion terms are discretized by a Galerkin finite-element formulation. The temporal terms are evaluated based on an explicit fourth-order Runge-Kutta scheme. The effect of...