Loading...
Search for: vacuum-applications
0.005 seconds

    Mechanism of reaction of molten NiTi with EBM graphite crucible

    , Article Materials Science and Technology ; Volume 25, Issue 6 , 2009 , Pages 699-706 ; 02670836 (ISSN) Sadrnezhaad, Kh ; Ahmadi, E ; Malekzadeh, M ; Sharif University of Technology
    2009
    Abstract
    Ultra clean NiTi shape memory alloy was produced by electron beam melting of Ni rich vacuum inductionally melted butts together with pure Ti chunks in both condensed and electrographite crucibles. A hollow cathode discharge gun was used for heating up to 1623, 1653 and 1693 K and holding the charge materials under vacuum for 300, 600, 900 and 1200 s. Effects of temperature, time and compactness of the crucible on formation/disappearance of the hard compounds like Ni3Ti, Ti4Ni2O, Ti4Ni 2C, Ti3Ni2OC and TiC were determined by X-ray diffraction, scanning electron microscopy and energy dispersive X-ray analysis. A combination of the experimental results with the kinetic rate equations indicated... 

    Crystallinity of CoSi2 nanolayer grown by refractory metal interlayer and cap layer methods

    , Article Journal of Physics: Conference Series ; Volume 100, Issue PART 4 , 2008 ; 17426588 (ISSN) Akhavan, O ; Moshfegh, A. Z ; Sharif University of Technology
    Institute of Physics Publishing  2008
    Abstract
    Epitaxial formation of CoSi2 nanolayer by solid state reaction of Co-Si in refractory metal intermediate-layer and cap-layer systems was investigated. Thin films of Ta and W, as the refractory metal intermediate or cap layers of the Co film, were deposited on Si(100) substrate and then heat-treated. The both interlayers resulted in formation of epitaxial CoSi 2 with (100) crystallographic orientation at 900°C. However, in the Ta intermediated system, the grown CoSi2 layer was thermally unstable at 1000°C, unlike the W system with a stable silicide layer. We found that use of W cap-layer cannot yield an epitaxial CoSi2 phase. But, a Ta cap-layer resulted in formation of epitaxial CoSi2(100)... 

    Producing Ti-6Al-4V/TiC composite with good ductility by vacuum induction melting furnace and hot rolling process

    , Article Materials and Design ; Volume 32, Issue 10 , December , 2011 , Pages 5010-5014 ; 02641275 (ISSN) Rastegari, H. A ; Asgari, S ; Abbasi, S. M ; Sharif University of Technology
    2011
    Abstract
    In this paper, Ti-6Al-4V/TiC composite was fabricated by VIM furnace and graphite crucible. X-ray diffraction analysis and EDS techniques were used to identify the phases in the material. Microstructure characteristics of the Ti-6Al-4V/TiC composite were evaluated by means of optical microscopy. The tensile test was performed at room temperature after hot-rolling of the samples in the beta phase field. The results revealed that at different melting times, three kinds of precipitates are formed in the microstructure including grain boundary, eutectic and transgranular precipitates. The size of transgranular precipitates was significantly larger than that of the other two types of carbides and... 

    Materials selection for applications in space environment considering outgassing phenomenon

    , Article Advances in Space Research ; Volume 45, Issue 6 , 2010 , Pages 741-749 ; 02731177 (ISSN) Fayazbakhsh, K ; Abedian, A ; Sharif University of Technology
    Abstract
    Application of the existing materials selection methods is not much popular in space environment. This is in spite of involvement of the selection process in this field with a wide range of influential factors (e.g. conventional mechanical properties and over 21 space environmental effects). In this paper an introductory road map for employing systematic materials selection methods in the field by engaging the selection process with mechanical properties and only one of the space environmental factors is presented. Here, selected case studies, which are involved with outgassing phenomenon of materials in vacuum condition, highlight the incapability of some of the methods in dealing with such... 

    A reopened crowbar protection for increasing the resiliency of the vacuum tube high-voltage DC power supply against the vacuum Arc

    , Article IEEE Transactions on Plasma Science ; Volume 47, Issue 5 , 2019 , Pages 2717-2725 ; 00933813 (ISSN) Pouresmaeil, K ; Kaboli, S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    High-voltage power supplies (HVPSs) are widely used to supply vacuum tubes. The amount of delivered energy from the HVPS to the tube is an important issue during the vacuum arc in the tube. The conventional protection mechanism consists of a shunt crowbar which diverts the fault current from the tube to itself as a parallel path. The crowbar circuit is usually built of the devices without the turn-off capability. It is a drawback since the output of the power supply is shortened for a long time. Thus, the restoration time of these power supplies is excessive. This demerit can have detrimental effects on mission-critical applications. In this paper, the insulated-gate bipolar transistor... 

    Twin growth in RF window ceramic as a criterion for the response time of protection system in high power vacuum tubes

    , Article 2019 International Vacuum Electronics Conference, IVEC 2019, 28 April 2019 through 1 May 2019 ; 2019 ; 9781538675342 (ISBN) Kaboli, S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    The ceramic fracture in output RF window is one of the most important failure factors in high power microwave sources. Fast protection systems are used to protect the source. The methods for determining the required protection response time are conservative and rough. In this paper, an investigation is presented about the twin growth in the ceramic of RF window in faulty condition. It is shown that the twin growth in ceramic can be a reliable figure of merit for the response time calculation of the microwave source protection system  

    A Vacuum arc diagnosis method for the high voltage power supply of vacuum tubes

    , Article 2019 International Vacuum Electronics Conference, IVEC 2019, 28 April 2019 through 1 May 2019 ; 2019 ; 9781538675342 (ISBN) Ayoubi, R ; Rahmanian, M ; Kaboli, S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Vacuum tubes are widely used for various applications. These vacuum tubes are supplied by high voltage power supplies. The amount of delivered energy from the high voltage power supply to the vacuum tube is an important issue during the vacuum arc in the tube. The protection mechanism consists of a shunt crowbar which diverts the fault current from the tube to itself as a parallel path. Detection of the vacuum arc is crucial and only one sensor is usually employed to detect the vacuum arc. This characteristic intensifies the interference susceptibility of the vacuum arc diagnosis system in a noisy environment. As a result of the noise, the arc detection system can report false alarms. False... 

    A Fast vacuum arc detection method based on the neural network data fusion algorithm for the high-voltage dc power supply of vacuum tubes

    , Article IEEE Transactions on Plasma Science ; 2020 Ayoubi, R ; Kaboli, S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    Vacuum arc is one of the most important failure factors of the vacuum tubes. The amount of delivered energy from the high-voltage dc power supply to the vacuum tube is an important issue during the vacuum arc in the tube. Vacuum arc acts as a short-circuit fault (SCF) at the power supply output. The majority of converters use a single current sensor to measure only the converter output current for detecting the SCF. However, the sensor may provide unreliable data because of the noise effect. Application of a low-pass filter reduces the noise effect. Regarding the delay of the low-pass filter, the interval of arc detection increases and more energy is delivered to the tube. In this article, a... 

    A comprehensive design of the thyristor-based crowbar for vacuum tube high-voltage dc power supplies

    , Article IEEE Transactions on Plasma Science ; Volume 48, Issue 6 , 2020 , Pages 2202-2209 Pouresmaeil, K ; Kaboli, S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    High-voltage power supplies (HVPSs) are widely used to drive vacuum tubes, inherently susceptible to vacuum arc faults. Owing to the considerable cost of vacuum tubes, the HVPS should enjoy a reliable, fast protection mechanism. A common protection mechanism against vacuum arc faults is the shunt crowbar. The crowbar diverts the energy stored in the elements of the HVPS through itself as a parallel path, thereby protecting vacuum tubes from irrecoverable damages. Among all types of the shunt crowbar, the thyristor-based crowbar along with the fault current limiter (FCL) resistors attracts more attention because of its more reliable operation. The absence of the comprehensive design procedure... 

    Synthesis of a nanostructured MgH2-Ti alloy composite for hydrogen storage via combined vacuum arc remelting and mechanical alloying

    , Article Materials Letters ; Volume 65, Issue 7 , 2011 , Pages 1120-1122 ; 0167577X (ISSN) Mahmoudi, N ; Kaflou, A ; Simchi, A ; Sharif University of Technology
    Abstract
    To improve the hydrogen kinetics of magnesium hydride, TiCr 1.2Fe0.6 alloy was prepared by vacuum arc remelting (VAR) and the alloy was co-milled with MgH2 to process nanostructured MgH2-5 at.% TiCr1.2Fe0.6 powder. The hydrogen desorption properties of the composite powder were studied and compared with pure magnesium hydride. X-ray diffraction (XRD) analysis showed that the composite powder prepared by VAR/mechanical alloying (MA) procedure consisted of β-MgH2, γ-MgH2, bcc Ti-Cr-Fe alloy, and small amount of MgO. The average size of particles and their grain structure after 4 h MA were determined by a laser particle size analyzer and XRD method and found to be 194 nm and 11 nm,... 

    The effects of homogenization time and cooling environment on microstructure and transformation temperatures of Ni-42.5wt%Ti-7.5wt%Cu alloy

    , Article Defect and Diffusion Forum ; Volume 297-301 , 2010 , Pages 344-350 ; 10120386 (ISSN); 3908451809 (ISBN); 9783908451808 (ISBN) Omrani, E ; Shokuhfar, A ; Etaati, A ; Dorri M., A ; Saatian, A ; Sharif University of Technology
    Trans Tech Publications Ltd  2010
    Abstract
    The present paper deals with different effects of homogenization time and cooling environment on Ni-42.5wt%Ti-7.5wt%Cu alloy. The alloy was prepared by vacuum arc melting. Afterwards, three homogenization times (half, one and two hour) and three cooling environments (water, air and furnace) at 1373 K were selected. Optical and Scanning Electron Microscopic methods, EDX, DSC and hardness tests have been used to evaluate the microstructure, transformation temperatures and hardness. Results indicate that specimens that were cooled in air are super-saturated. Also, the microstructure from furnace cooling has many disparities with the other cooling environments' microstructure and two types of... 

    Growth and field emission study of molybdenum oxide nanostars

    , Article Journal of Physical Chemistry C ; Volume 113, Issue 44 , 2009 , Pages 19298-19304 ; 19327447 (ISSN) Khademi, A ; Azimirad, R ; Zavarian, A. A ; Zaker Moshfegh, A. R ; Sharif University of Technology
    2009
    Abstract
    The field emission properties of MoO2 nanostars grown on a silicon substrate and their emission performance in various vacuum gaps are reported in this article. A new structure of molybdenum oxides, named a nanostar, is grown by thermal vapor deposition with a length of ̃1 μm, a thickness of ̃50 nm, and its width in the range of 500-700 nm. The morphology, structure, composition, and chemical states of the prepared nanostars were characterized by scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). According to XRD analysis, the grown nanostructures are composed of both crystalline Mo4O11 and... 

    Field-emission enhancement of molybdenum oxide nanowires with nanoprotrusions

    , Article Journal of Nanoparticle Research ; Volume 13, Issue 1 , January , 2011 , Pages 115-125 ; 13880764 (ISSN) Khademi, A ; Azimirad, R ; Nien, Y. T ; Moshfegh, A. Z ; Sharif University of Technology
    2011
    Abstract
    The field-emission properties of molybdenum oxide nanowires grown on a silicon substrate and its emission performance in various vacuum gaps are reported in this article. A new kind of molybdenum oxides named nanowires with nanoscale protrusions on their surfaces were grown by thermal vapor deposition with a length of ~1 μm and an average diameter of ~50 nm. The morphology, structure, composition and chemical states of the prepared nanostructures were characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). According to XRD, XPS, and TEM analyses, the synthesized samples...