Loading...
Search for: vascular-endothelial-growth-factor
0.005 seconds

    VEGF Isolation from Platelet Lysate

    , M.Sc. Thesis Sharif University of Technology Sanaei, Reza (Author) ; Abdekhodaie, Mohammad Jafar (Supervisor)
    Abstract
    Platelet-rich plasma as a juvenile to the narrow repertoire of orthopedic medicine, has risen hope to attain a generic autologous regenerative formula for different conditions. Vast plethora of GFs, cytokines and chemokines has endowed PRP with excellent regenerative properties, however not all of them would favor different conditions. Vascular endothelial growth factor has been demonstrated to be involved in the progress of Osteoarthritis by amplifying the catabolic processes which deteriorate the extracellular matrix of cartilage. Though cumbersome, the result of eliminating VEGF from platelet lysate would be promising. VEGF isolation from platelet lysate requires selectivity. By employing... 

    Investigation of Molecular Interactions of VEGFR and its Inhibitors by Molecular Dynamics Simulation

    , M.Sc. Thesis Sharif University of Technology Didandeh, Mohsen (Author) ; Bastani, Daruoosh (Supervisor) ; Mashayekhan, Shohreh (Co-Supervisor) ; Karami, Layla (Co-Supervisor)
    Abstract
    One of the chief kinds of receptors in cancer angiogenesis is the tyrosine kinase VEGFR-2. This target receptor is presented in both forms; active and inactive. adenosine triphosphate (ATP) residue is the location of deformational change from inactive to active form. Small molecule inhibitors have been designed for various forms of this receptor. In current study, the interaction of small molecular inhibitors including; Regorafenib, Cabozantinib and Thiosanib with dual VEGFR-2 receptor forms was investigated by molecular dynamics with Gromacs software. Cabozantinib and Regorafenib inhibitors had a lower binding energy in interaction with the inactive state however, Thiosanib inhibitors in... 

    A microfluidic device for 2D to 3D and 3D to 3D cell navigation

    , Article Journal of Micromechanics and Microengineering ; Volume 26, Issue 1 , November , 2015 ; 09601317 (ISSN) Shamloo, A ; Amirifar, L ; Sharif University of Technology
    Institute of Physics Publishing  2015
    Abstract
    Microfluidic devices have received wide attention and shown great potential in the field of tissue engineering and regenerative medicine. Investigating cell response to various stimulations is much more accurate and comprehensive with the aid of microfluidic devices. In this study, we introduced a microfluidic device by which the matrix density as a mechanical property and the concentration profile of a biochemical factor as a chemical property could be altered. Our microfluidic device has a cell tank and a cell culture chamber to mimic both 2D to 3D and 3D to 3D migration of three types of cells. Fluid shear stress is negligible on the cells and a stable concentration gradient can be... 

    Microfluidics-Enabled multimaterial maskless stereolithographic bioprinting

    , Article Advanced Materials ; Volume 30, Issue 27 , 2018 ; 09359648 (ISSN) Miri, A. K ; Nieto, D ; Iglesias, L ; Goodarzi Hosseinabadi, H ; Maharjan, S ; Ruiz Esparza, G. U ; Khoshakhlagh, P ; Manbachi, A ; Dokmeci, M. R ; Chen, S ; Shin, S. R ; Zhang, Y. S ; Khademhosseini, A ; Sharif University of Technology
    Wiley-VCH Verlag  2018
    Abstract
    A stereolithography-based bioprinting platform for multimaterial fabrication of heterogeneous hydrogel constructs is presented. Dynamic patterning by a digital micromirror device, synchronized by a moving stage and a microfluidic device containing four on/off pneumatic valves, is used to create 3D constructs. The novel microfluidic device is capable of fast switching between different (cell-loaded) hydrogel bioinks, to achieve layer-by-layer multimaterial bioprinting. Compared to conventional stereolithography-based bioprinters, the system provides the unique advantage of multimaterial fabrication capability at high spatial resolution. To demonstrate the multimaterial capacity of this... 

    Induced cell migration based on a bioactive hydrogel sheet combined with a perfused microfluidic system

    , Article Biomedical Materials (Bristol) ; Volume 15, Issue 4 , May , 2020 Jafarkhani, M ; Jafarkhani, M ; Salehi, Z ; Mashayekhan, S ; Kowsari Esfahan, R ; Dolatshahi Pirouz, A ; Bonakdar, S ; Shokrgozar, M. A ; Sharif University of Technology
    Institute of Physics Publishing  2020
    Abstract
    Endothelial cell migration is a crucial step in the process of new blood vessel formation - a necessary process to maintain cell viability inside thick tissue constructs. Here, we report a new method for maintaining cell viability and inducing cell migration using a perfused microfluidic platform based on collagen gel and a gradient hydrogel sheet. Due to the helpful role of the extracellular matrix components in cell viability, we developed a hydrogel sheet from decellularized tissue (DT) of the bovine heart and chitosan (CS). The results showed that hydrogel sheets with an optimum weight ratio of CS/DT = 2 possess a porosity of around 75%, a mechanical strength of 23 kPa, and display cell... 

    Biomimetic proteoglycan nanoparticles for growth factor immobilization and delivery

    , Article Biomaterials Science ; Volume 8, Issue 4 , 2020 , Pages 1127-1136 Zandi, N ; Mostafavi, E ; Shokrgozar, M. A ; Tamjid, E ; Webster, T. J ; Annabi, N ; Simchi, A ; Sharif University of Technology
    Royal Society of Chemistry  2020
    Abstract
    The delivery of growth factors is often challenging due to their short half-life, low stability, and rapid deactivation. In native tissues, the sulfated residual of glycosaminoglycan (GAG) polymer chains of proteoglycans immobilizes growth factors through the proteoglycans'/proteins' complexation with nanoscale organization. These biological assemblies can influence growth factor-cell surface receptor interactions, cell differentiation, cell-cell signaling, and mechanical properties of the tissues. Here, we introduce a facile procedure to prepare novel biomimetic proteoglycan nanocarriers, based on naturally derived polymers, for the immobilization and controlled release of growth factors.... 

    Hybrid multiscale modeling and prediction of cancer cell behavior

    , Article PLoS ONE ; Volume 12, Issue 8 , 2017 ; 19326203 (ISSN) Zangooei, M. H ; Habibi, J ; Sharif University of Technology
    Public Library of Science  2017
    Abstract
    Background: Understanding cancer development crossing several spatial-temporal scales is of great practical significance to better understand and treat cancers. It is difficult to tackle this challenge with pure biological means. Moreover, hybrid modeling techniques have been proposed that combine the advantages of the continuum and the discrete methods to model multiscale problems. Methods: In light of these problems, we have proposed a new hybrid vascular model to facilitate the multiscale modeling and simulation of cancer development with respect to the agent-based, cellular automata and machine learning methods. The purpose of this simulation is to create a dataset that can be used for... 

    Development of a novel nano-sized anti-VEGFA nanobody with enhanced physicochemical and pharmacokinetic properties

    , Article Artificial Cells, Nanomedicine and Biotechnology ; Volume 46, Issue 7 , 2018 , Pages 1402-1414 ; 21691401 (ISSN) Khodabakhsh, F ; Norouzian, D ; Vaziri, B ; Ahangari Cohan, R ; Sardari, S ; Mahboudi, F ; Behdani, M ; Mansouri, K ; Mehdizadeh, A ; Sharif University of Technology
    Abstract
    Since physiological and pathological processes occur at nano-environments, nanotechnology has considered as an efficient tool for designing of next generation specific biomolecules with enhanced pharmacodynamic and pharmacodynamic properties. In the current investigation, by control of the size and hydrodynamic volume at the nanoscale, for the first time, physicochemical and pharmacokinetic properties of an anti-VEGFA nanobody was remarkably improved by attachment of a Proline-Alanine-Serine (PAS) rich sequence. The results elucidated unexpected impressive effects of PAS sequence on physicochemical properties especially on size, hydrodynamics radius, and even solubility of nanobody. CD...