Loading...
Search for: vdw-force
0.008 seconds

    Influence of Van der Waals force on static behavior of nano/micromirrors under capillary force

    , Article International Journal of Modern Physics B ; Volume 26, Issue 7 , 2012 ; 02179792 (ISSN) Moeenfard, H ; Darvishian, A ; Zohoor, H ; Ahmadian, M. T ; Sharif University of Technology
    2012
    Abstract
    In the current paper, the effect of van der Waals (vdW) force on the static behavior and pull-in characteristics of nano/micromirrors under capillary force is investigated. At first, the dimensionless equation governing the static behavior of nano/micromirrors is obtained. The dependence of the critical tilting angle on the physical and geometrical parameters of the nano/micromirror and its supporting torsional beams is investigated. It is found that the existence of vdW force can considerably reduce the stability limits of the nano/micromirror. It is also found that rotation angle of the mirror due to capillary force highly depends on the vdW force applied to the mirror. Finally, analytical... 

    A coupled model between torsion and bending in nano/micromirrors under the combined effect of Van der Waals force and capillary force

    , Article ASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011, 11 November 2011 through 17 November 2011, Denver, CO ; Volume 11 , 2011 , Pages 523-529 ; 9780791854976 (ISBN) Moeenfard, H ; Darvishian, A ; Ahmadian, M. T ; ASME ; Sharif University of Technology
    Abstract
    The coupling effect between torsion and bending in nano/micromirrors under the combined effect of capillary force and van der Waals (vdW) force is presented in this paper. At the first, the dimensionless equations governing the statical behavior of the nano/micromirror are obtained using the minimum total potential energy principle. Then the equations governing the pull-in state of the mirror are obtained using the implicit function theorem. The related results show that neglecting bending effect can lead to considerable overestimation in predicting the pull-in limits of the nano/micromirror under combined vdW and capillary forces. It is observed that vdW force reduces the pull-in angle and... 

    Analytical modeling of static behavior of electrostatically actuated nano/micromirrors considering van der Waals forces

    , Article Acta Mechanica Sinica/Lixue Xuebao ; Volume 28, Issue 3 , June , 2012 , Pages 729-736 ; 05677718 (ISSN) Moeenfard, H ; Ahmadian, M. T ; Sharif University of Technology
    2012
    Abstract
    In this paper, the effect of van der Waals (vdW) force on the pull-in behavior of electrostatically actuated nano/micromirrors is investigated. First, the minimum potential energy principle is utilized to find the equation governing the static behavior of nano/micromirror under electrostatic and vdW forces. Then, the stability of static equilibrium points is analyzed using the energy method. It is found that when there exist two equilibrium points, the smaller one is stable and the larger one is unstable. The effects of different design parameters on the mirror's pull-in angle and pull-in voltage are studied and it is found that vdW force can considerably reduce the stability limit of the... 

    A coupled two degree of freedom model for nano/micromirrors under van der waals force

    , Article Proceedings of the ASME Design Engineering Technical Conference ; Volume 5 , 2012 , Pages 145-150 ; 9780791845042 (ISBN) Moeenfard, H ; Darvishian, A ; Ahmadian, M. T ; Sharif University of Technology
    2012
    Abstract
    The current paper presents a two degree of freedom model for the problem of nano/micromirrors under the effect of vdW force. Energy method, the principal of minimum potential energy is employed for finding the equilibrium equations governing the deflection and the rotation of the nano/micromirror. Then using the implicit function theorem, a coupled bending-torsion model is presented for the pull-in characteristics of nano/micromirrors under vdW force and the concept of instability mode is introduced. It is observed that with increasing the ratio of the bending stiffness to the torsion stiffness, the dominant instability mode changes from bending mode to the torsion mode. It is shown that... 

    Closed form solutions for the problem of statical behavior of nano/micromirrors under the effect of capillary force and van der Waals force

    , Article ASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011, 11 November 2011 through 17 November 2011, Denver, CO ; Volume 11 , 2011 , Pages 213-219 ; 9780791854976 (ISBN) Darvishian, A ; Moeenfard, H ; Zohoor, H ; Ahmadian, M. T ; ASME ; Sharif University of Technology
    2011
    Abstract
    The current paper deals with the problem of static instability of Micro/Nano mirrors under the combined effect of capillary force and van der Waals force. First the governing equations of the statical behavior of Micro/Nano mirrors under the combined effect of capillary force and casimir force is obtained using the newtons first law of motion. The dependence of the critical tilting angle on the physical and geometrical parameters of the nano/micromirror and its supporting torsional beams is investigated. It is found that existence of vdW torque can considerably reduce the stability limits of the nano/micromirror. It is also found that rotation angle of the mirror due to capillary force...