Loading...
Search for: vector-control--electric-machinery
0.01 seconds

    Numerical investigation of injection angle effects on shock vector control performance

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; Volume 233, Issue 2 , 2019 , Pages 405-417 ; 09544100 (ISSN) Forghany, F ; Taeibe Rahni, M ; Asadollahi Ghohieh, A ; Banazdeh, A ; Sharif University of Technology
    SAGE Publications Ltd  2019
    Abstract
    The present research paper attempted to utilize a computational investigation for optimizing the fluidic injection angle effects on thrust vectoring. Simulation of a convergent divergent nozzle with shock-vector control method was performed, using URANS approach with Spalart–Allmaras turbulence model. The variable fluidic injection angle is investigated at different aerodynamic and geometric conditions. The current investigation demonstrated that injection angle is an essential parameter in fluidic thrust vectoring. Computational results indicate that optimizing injection angle would improve the thrust vectoring performance. Moreover, dynamic response of starting thrust vectoring would... 

    Nonlinear adaptive control of grid-connected three-phase inverters for renewable energy applications

    , Article International Journal of Control ; 2015 ; 00207179 (ISSN) Mahdian Dehkordi, N ; Namvar, M ; Karimi, H ; Piya, P ; Karimi Ghartemani, M ; Sharif University of Technology
    Abstract
    Distributed generation (DG) units are often interfaced to the main grid using power electronic converters including voltage-source converters (VSCs). A VSC offers dc/ac power conversion, high controllability, and fast dynamic response. Because of nonlinearities, uncertainties, and system parameters’ changes involved in the nature of a grid-connected renewable DG system, conventional linear control methods cannot completely and efficiently address all control objectives. In this paper, a nonlinear adaptive control scheme based on adaptive backstepping strategy is presented to control the operation of a grid-connected renewable DG unit. As compared to the popular vector control technique, the... 

    Nonlinear adaptive control of grid-connected three-phase inverters for renewable energy applications

    , Article International Journal of Control ; Volume 90, Issue 1 , 2017 , Pages 53-67 ; 00207179 (ISSN) Mahdian Dehkordi, N ; Namvar, M ; Karimi, H ; Piya, P ; Karimi Ghartemani, M ; Sharif University of Technology
    Abstract
    Distributed generation (DG) units are often interfaced to the main grid using power electronic converters including voltage-source converters (VSCs). A VSC offers dc/ac power conversion, high controllability, and fast dynamic response. Because of nonlinearities, uncertainties, and system parameters’ changes involved in the nature of a grid-connected renewable DG system, conventional linear control methods cannot completely and efficiently address all control objectives. In this paper, a nonlinear adaptive control scheme based on adaptive backstepping strategy is presented to control the operation of a grid-connected renewable DG unit. As compared to the popular vector control technique, the... 

    Post fault vector control of an induction motor fed by a chb inverter

    , Article 10th International Power Electronics, Drive Systems and Technologies Conference, PEDSTC 2019, 12 February 2019 through 14 February 2019 ; Pages 149-154 , 2019 ; 9781538692547 (ISBN) Fathi, M ; Zolghadri, M ; Ouni, S ; Babaloo, R ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    In this paper, a new post-fault vector control of an induction motor, fed by a faulty Cascaded H-Bridge (CHB) inverter, is presented. Among fault tolerant control methods, waveform based methods are suitable for closed-loop control and provide higher output voltage. In order to control the speed of the motor, a rotor field oriented control (RFOC) is used. During the fault, the FOC is modified to decrease the fault impact on the motor as low as possible. The proposed method is validated by means of simulation results for different loads and faults. The results show an improvement in both the final operating point and the transient response of the motor  

    Principal component analysis-based control charts using support vector machines for multivariate non-normal distributions

    , Article Communications in Statistics: Simulation and Computation ; 2019 ; 03610918 (ISSN) Farokhnia, M ; Akhavan Niaki, S. T ; Sharif University of Technology
    Taylor and Francis Inc  2019
    Abstract
    The growing demand for statistical process monitoring has led to the vast utilization of multivariate control charts. Complicated structure of the measured variables associated with highly correlated characteristics, has given rise to daily increasing urge for reliable substitutes of conventional methods. In this regard, projection methods have been developed to address the issue of high correlation among characteristics by transforming them to an uncorrelated set of variables. Principal component analysis (PCA)-based control charts are widely used to overcome the issue of correlation among measured variables by defining linear transformations of the existing variables to a new uncorrelated... 

    Principal component analysis-based control charts using support vector machines for multivariate non-normal distributions

    , Article Communications in Statistics: Simulation and Computation ; 2019 ; 03610918 (ISSN) Farokhnia, M ; Akhavan Niaki, S. T ; Sharif University of Technology
    Taylor and Francis Inc  2019
    Abstract
    The growing demand for statistical process monitoring has led to the vast utilization of multivariate control charts. Complicated structure of the measured variables associated with highly correlated characteristics, has given rise to daily increasing urge for reliable substitutes of conventional methods. In this regard, projection methods have been developed to address the issue of high correlation among characteristics by transforming them to an uncorrelated set of variables. Principal component analysis (PCA)-based control charts are widely used to overcome the issue of correlation among measured variables by defining linear transformations of the existing variables to a new uncorrelated... 

    Principal component analysis-based control charts using support vector machines for multivariate non-normal distributions

    , Article Communications in Statistics: Simulation and Computation ; Volume 49, Issue 7 , 2020 , Pages 1815-1838 Farokhnia, M ; Akhavan Niaki, S. T ; Sharif University of Technology
    Taylor and Francis Inc  2020
    Abstract
    The growing demand for statistical process monitoring has led to the vast utilization of multivariate control charts. Complicated structure of the measured variables associated with highly correlated characteristics, has given rise to daily increasing urge for reliable substitutes of conventional methods. In this regard, projection methods have been developed to address the issue of high correlation among characteristics by transforming them to an uncorrelated set of variables. Principal component analysis (PCA)-based control charts are widely used to overcome the issue of correlation among measured variables by defining linear transformations of the existing variables to a new uncorrelated...