Loading...
Search for: velocity-components
0.013 seconds

    Numerical study to evaluate soot formation in a jp combustor equipped to different types of swirler

    , Article AIAA Propulsion and Energy Forum and Exposition, 2019, 19 August 2019 through 22 August 2019 ; 2019 ; 9781624105906 (ISBN) Darbandi, M ; Ghafourizadeh, M ; Schneider, G. E ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc, AIAA  2019
    Abstract
    This paper is concentrated on soot formation in a JP combustor and it studies the emission in its exhaust gases when the combustor is equipped with different types of exhaust swirler. So, to approve the developed solver, it is required to predict one related flame structure accurately right at the first step. In this regard, we solve a well-documented benchmark test case with available data from experiment. These data are then compared with the current numerical results to evaluate the discrepancies. The comparison indicates that there is good agreement between them. Afterwards, we equip a similar combustor with different types of swirler, simulate the new designed combustor configurations,... 

    Numerical study to evaluate soot formation in a jp combustor equipped to different types of swirler

    , Article AIAA Propulsion and Energy Forum and Exposition, 2019, 19 August 2019 through 22 August 2019 ; 2019 ; 9781624105906 (ISBN) Darbandi, M ; Ghafourizadeh, M ; Schneider, G. E ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc, AIAA  2019
    Abstract
    This paper is concentrated on soot formation in a JP combustor and it studies the emission in its exhaust gases when the combustor is equipped with different types of exhaust swirler. So, to approve the developed solver, it is required to predict one related flame structure accurately right at the first step. In this regard, we solve a well-documented benchmark test case with available data from experiment. These data are then compared with the current numerical results to evaluate the discrepancies. The comparison indicates that there is good agreement between them. Afterwards, we equip a similar combustor with different types of swirler, simulate the new designed combustor configurations,... 

    Experimental and numerical study on heat transfer characteristics for methane/air flame impinging on a flat surface

    , Article International Journal of Thermal Sciences ; Volume 110 , 2016 , Pages 229-240 ; 12900729 (ISSN) Morad, M. R ; Momeni, A ; Ebrahimi Fordoei, E ; Ashjaee, M ; Sharif University of Technology
    Elsevier Masson SAS  2016
    Abstract
    Heat flux from a premixed methane/air slot laminar flame jet impinging upward to a horizontal target plate is studied experimentally and numerically. Mach-Zehnder interferometer is used to obtain the overall temperature field. The flame jet is produced by a slot nozzle with length of L = 25 mm and width of W = 3 mm. The slot nozzle is parallel to the target plate which has the dimensions of 250 × 130 × 10 mm. The experimentally obtained heat flux distributions were compared for different firing rates and nozzle to plate spacing. A second peak in heat flux to the target surface (an off-center peak with respect to the axis of the nozzle) was observed for the shortest spacing and highest firing... 

    Experimental investigation of single walue variables of three-dimensional density current

    , Article Canadian Journal of Physics ; Volume 87, Issue 2 , 2009 , Pages 125-134 ; 00084204 (ISSN) Firoozabadi, B ; Afshin, H ; Shelkhi, J ; Sharif University of Technology
    2009
    Abstract
    The height of a dense layer underflow is defined as the interface between a dyed saline solution fluid and colorless ambient fluid. In this paper, the density current height or vision height of three-dimensional saline water under pure water is measured empirically, and the relation of this parameter with the location of maximum velocity is investigated. Because of the absence of a clear interface between the dense underflow and pure water, researchers were unable to define a unique parameter for the evaluation of density current height. The parameters used by some researchers include the height corresponding to the location of maximum, half-maximum, and quarter-maximum velocity in the... 

    Shock polar investigation in supersonic rarefied gas flows over a circular cylinder

    , Article Physics of Fluids ; Volume 33, Issue 5 , 2021 ; 10706631 (ISSN) Akhlaghi, H ; Roohi, E ; Daliri, A ; Soltani, M. R ; Sharif University of Technology
    American Institute of Physics Inc  2021
    Abstract
    Well-known polars in classical shock wave theory, that is, flow deflection angle-shock angle (θ-β), hodograph (u*,v*), and pressure deflection (θ-P*) diagrams, are investigated for the rarefied gas flows using a recently proposed shock wave detection technique by Akhlaghi and coworkers. The agreement between the obtained polars with the analytical relations in classical shock wave theory has been shown in the continuum limit for the cases of supersonic flow over the wedge and cylinder geometries. Investigations are performed using the RGS2D direct simulation Monte Carlo solver for supersonic gas flows over a circular cylinder at continuum limit and Kn = 10-4, 10-3, 0.01, 0.03, 0.07, and... 

    Shock polar investigation in supersonic rarefied gas flows over a circular cylinder

    , Article Physics of Fluids ; Volume 33, Issue 5 , 2021 ; 10706631 (ISSN) Akhlaghi, H ; Roohi, E ; Daliri, A ; Soltani, M. R ; Sharif University of Technology
    American Institute of Physics Inc  2021
    Abstract
    Well-known polars in classical shock wave theory, that is, flow deflection angle-shock angle (θ-β), hodograph (u*,v*), and pressure deflection (θ-P*) diagrams, are investigated for the rarefied gas flows using a recently proposed shock wave detection technique by Akhlaghi and coworkers. The agreement between the obtained polars with the analytical relations in classical shock wave theory has been shown in the continuum limit for the cases of supersonic flow over the wedge and cylinder geometries. Investigations are performed using the RGS2D direct simulation Monte Carlo solver for supersonic gas flows over a circular cylinder at continuum limit and Kn = 10-4, 10-3, 0.01, 0.03, 0.07, and... 

    Iterative coupled experimental-numerical evaluation of dispersivity in fractured porous media using micromodel system

    , Article 73rd European Association of Geoscientists and Engineers Conference and Exhibition 2011: Unconventional Resources and the Role of Technology. Incorporating SPE EUROPEC 2011 ; Vol. 4, issue , 2011 , p. 2461-2466 Saidian, M ; Ghazanfari, M. H ; Masihi, M ; Kharrat, R ; Kianinejad, A ; Sharif University of Technology
    Abstract
    In this study a new iterative algorithm is developed to evaluate dispersivity in fracture and matrix, distinctly. The novelty of proposed algorithm is using mathematical model of solute transport in fractured porous media coupled with experimental data iteratively. A fractured glass micromodel has been designed to visualize the interaction between fracture and matrix during displacement of n-Decane by n-Octane at constant rate. The similarity between numerical and experimental model has been enhanced by reducing the assumptions which were applied in previous related studies. The iteration is performed on velocity components of solute transport and longitudinal as well as transversal... 

    Simulation of turbulent swirling flow in convergent nozzles

    , Article Scientia Iranica ; Volume 19, Issue 2 , 2012 , Pages 258-265 ; 10263098 (ISSN) Nouri-Borujerdi, A ; Kebriaee, A ; Sharif University of Technology
    Abstract
    This work simulates the turbulent boundary layer of an incompressible viscous swirling flow through a conical chamber. To model the pressure gradient normal to the wall, the radial and tangential velocity components across the boundary layer have been calculated by both the integral and numerical methods. The numerical solution is accomplished by finite difference, based on the finite volume method. The results show that the radial and tangential boundary layer thicknesses depend on the velocity ratios, Reynolds number and nozzle angle. The peak of radial and tangential boundary layer thicknesses are located at zL≈0.2 and zL≈0.8 from the nozzle inlet, respectively. Due to the short length of... 

    Iterative coupled experimental-numerical evaluation of dispersivity in fractured porous media using micromodel system

    , Article 73rd European Association of Geoscientists and Engineers Conference and Exhibition 2011: Unconventional Resources and the Role of Technology. Incorporating SPE EUROPEC 2011 ; Volume 4 , May , 2011 , Pages 2461-2466 ; 9781617829666 (ISBN) Saidian, M ; Ghazanfari, M. H ; Masihi, M ; Kharrat, R ; Kianinejad, A ; Sharif University of Technology
    Society of Petroleum Engineers  2011
    Abstract
    In this study a new iterative algorithm is developed to evaluate dispersivity in fracture and matrix, distinctly. The novelty of proposed algorithm is using mathematical model of solute transport in fractured porous media coupled with experimental data iteratively. A fractured glass micromodel has been designed to visualize the interaction between fracture and matrix during displacement of n-Decane by n-Octane at constant rate. The similarity between numerical and experimental model has been enhanced by reducing the assumptions which were applied in previous related studies. The iteration is performed on velocity components of solute transport and longitudinal as well as transversal... 

    Porous media approach in thermohydraulic analysis of high temperature reactors in pressurized/depressurized cooldown: An improvement

    , Article Progress in Nuclear Energy ; Volume 80 , 2015 , Pages 119-127 ; 01491970 (ISSN) Nouri Borujerdi, A ; Tabatabai Ghomsheh, S. I ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    The current study aims at introducing a 2D and fast-running code for the issues pertinent to design, analysis and safety in modular high temperature reactors. While the porous media approach is only applied to pebble bed type, the analysis in this paper covers both pebble bed and prismatic reactor. A time-dependent mass equation along with energy conservation equation for the cooling gas and a time-dependent energy conservation equation for the solid was solved. Appropriate series of constitutive equations (e.g. heat transfer coefficient, effective heat conductivity of solid, heat transfer coefficient, pressure drop etc.) has been recruited as well. In addition a finite-volume method is... 

    The pulsatile flow of Oldroyd-B fluid in a multi-stenosis artery with a time-dependent wall

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 224, Issue 4 , 2010 , Pages 915-923 ; 09544062 (ISSN) Javadzadegan, A ; Fakhimghanbarzadeh, B ; Sharif University of Technology
    Abstract
    In this study, the fundamental problem of unsteady blood flow in a tube with multi-stenosis is studied. An appropriate shape of the time-dependent multi-stenosis which is overlapping in the realm of formation of arterial narrowing is constructed mathematically. Blood is considered as a viscoelastic fluid characterized by the Oldroyd-B model. For the numerical solution of the problem, which is described by a coupled, non-linear system of partial differential equations (PDEs), with appropriate boundary conditions, the finite difference scheme is adopted. The solution is obtained by the development of an efficient numerical methodology based on the predictor-corrector method. The effects of... 

    A new approach to thermo-fluid behavior through porous layer of heat pipes

    , Article Scientia Iranica ; Volume 25, Issue 3B , 2018 , Pages 1236-1242 ; 10263098 (ISSN) Nouri Borujerdi, A ; Sharif University of Technology
    Sharif University of Technology  2018
    Abstract
    This paper developed a new mathematical model to investigate the heat transfer as well as wick's thickness of a heat pipe. The model was established by conservative equations of continuity, momentum, and energy in the thermal boundary layer. Using a similarity variable, the governing equations were changed to a set of ordinary differential equations and were solved numerically by the forth-order Runge-Kutta method. The flow variables, such as velocity components, wick's thickness, and Nusselt number, were obtained. The results show that the Nusselt number is proportional to the square root of the Darcy-modified Rayleigh number and to the distance from the edge of the condenser surface.... 

    Turbulent decaying swirling flow in a pipe

    , Article Heat Transfer Research ; Volume 49, Issue 16 , 2018 , Pages 1559-1585 ; 10642285 (ISSN) Aghakashi, V ; Saidi, M. H ; Sharif University of Technology
    Begell House Inc  2018
    Abstract
    In this work, a solution is applied to investigate the heat transfer characteristics in a pipe with turbulent decaying swirling flow by using the boundary layer integral scheme. The governing equation is solved using the forth-order Runge-Kutta scheme resulting in thermal boundary-layer thickness and dimensionless heat transfer coefficient, namely, the Nusselt number. Both forced- and free-vortex profiles are considered for the tangential velocity component. A comparison of the results obtained for the Nusselt number with available experimental data shows that this scheme has good capability in predicting the heat transfer parameters of swirling flow especially in the entrance region of a... 

    Pulsatile flow of viscous and viscoelastic fluids in constricted tubes

    , Article Journal of Mechanical Science and Technology ; Volume 23, Issue 9 , 2009 , Pages 2456-2467 ; 1738494X (ISSN) Javadzadegan, A ; Esmaeili, M ; Majidi, S ; Fakhimghanbarzadeh, B ; Sharif University of Technology
    2009
    Abstract
    The unsteady flow of blood through stenosed artery, driven by an oscillatory pressure gradient, is studied. An appropriate shape of the time-dependent stenoses which are overlapped in the realm of the formation of arterial narrowing is constructed mathematically. A msathematical model is developed by treating blood as a non-Newtonian fluid characterized by the Oldroyd-B and Cross models. A numerical scheme has been used to solve the unsteady nonlinear Navier-stokes equations in cylindrical coordinate system governing flow, assuming axial symmetry under laminar flow condition so that the problem effectively becomes two-dimensional. Finite difference technique was used to investigate the...