Loading...
Search for: vibration-behaviors
0.005 seconds
Total 34 records

    Size-dependent vibrational behavior of a Jeffcott model for micro-rotor systems

    , Article Journal of Mechanical Science and Technology ; Volume 30, Issue 1 , 2016 , Pages 35-41 ; 1738494X (ISSN) Hashemi, M ; Asghari, M ; Sharif University of Technology
    Korean Society of Mechanical Engineers 
    Abstract
    In this study, several analytical expressions are obtained for the vibrational characteristics of a Jeffcott model for micro-rotor systems based on the strain gradient theory to investigate the small-scale effects on the model. The Jeffcott model consists of a massless microrotating shaft and a disk as a rotor with eccentricity. The disk is mounted on the middle of the shaft. Two second-order differential equations associated with the oscillating motion of the rotor in the plane perpendicular to the longitudinal axis are presented and transformed into a complex form. The stiffness of the system is determined by obtaining the deflection of a strain-gradient-based nonrotating microbeam... 

    Dynamic and vibration analysis of a 3-serial-link micro/nano-manipulator with piezoelectric actuation

    , Article Microsystem Technologies ; Volume 27 , July , 2020 , Pages 703–721 Jafarishad, H ; Ahmadian, M. T ; Sharif University of Technology
    Springer  2020
    Abstract
    In this work, the dynamic and vibrational behavior of a micro/nano-manipulator has been studied. The manipulator comprises three links attached serially. While the connection of the links is rigid, which makes the whole body a monolithic structure, the movement of the manipulator is derived from the links deflection. Piezoelectric layers were employed as an actuator to impose deflection on the links, thereby moving the manipulator. After defining the dynamic behavior of each link, manipulator equations of motion were developed. To evaluate the validity of the mathematical model, two FEM models were constructed. The observed results showed a good agreement between the models, and they... 

    Applications of single-layered graphene sheets as mass sensors and atomistic dust detectors

    , Article ASME 2007 International Mechanical Engineering Congress and Exposition, IMECE 2007, 11 November 2007 through 15 November 2007 ; Volume 11 , 2007 , Pages 99-104 ; 079184305X (ISBN) Sakhaee-Pour, A ; Ahmadian, M. T ; Vafai, A ; ASME ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2007
    Abstract
    Molecular structural mechanics is implemented to model vibrational behavior of defect free single-layered graphene sheets (SLGSs) at constant temperature. To mimic these two-dimensional layers, zigzag and armchair models with cantilever and bridge boundary conditions are adopted. Fundamental frequencies of these nano structures are calculated, and it is perceived that they are independent of the chirality and aspect ratio. Effects of point mass and atomistic dust on the fundamental frequencies are also considered in order to investigate the possibility of using SLGSs as sensors. Results of exhibit the principle frequencies are highly sensitive to the added mass in the order of 10-6 fg.... 

    Dynamic and vibration analysis of a 3-serial-link micro/nano-manipulator with piezoelectric actuation

    , Article Microsystem Technologies ; Volume 27, Issue 3 , 2021 , Pages 703-721 ; 09467076 (ISSN) Jafarishad, H ; Ahmadian, M. T ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    In this work, the dynamic and vibrational behavior of a micro/nano-manipulator has been studied. The manipulator comprises three links attached serially. While the connection of the links is rigid, which makes the whole body a monolithic structure, the movement of the manipulator is derived from the links deflection. Piezoelectric layers were employed as an actuator to impose deflection on the links, thereby moving the manipulator. After defining the dynamic behavior of each link, manipulator equations of motion were developed. To evaluate the validity of the mathematical model, two FEM models were constructed. The observed results showed a good agreement between the models, and they... 

    A size-dependent model for functionally graded micro-plates for mechanical analyses

    , Article JVC/Journal of Vibration and Control ; Volume 19, Issue 11 , 2013 , Pages 1614-1632 ; 10775463 (ISSN) Asghari, M ; Taati, E ; Sharif University of Technology
    2013
    Abstract
    In this paper, a size-dependent formulation is presented for mechanical analyses of inhomogeneous micro-plates based on the modified couple stress theory. The plate properties can arbitrarily vary through the thickness. The governing differential equations of motion are derived for functionally graded (FG) plates with arbitrary shapes utilizing a variational approach. Moreover, the boundary conditions are provided at smooth parts of the plate periphery and also at the sharp corners of the periphery. Utilizing the derived formulation, the free-vibration behavior as well as the static response of a rectangular FG micro-plate is investigated  

    A size-dependent nonlinear Timoshenko microbeam model based on the strain gradient theory

    , Article Acta Mechanica ; Volume 223, Issue 6 , 2012 , Pages 1233-1249 ; 00015970 (ISSN) Asghari, M ; Kahrobaiyan, M. H ; Nikfar, M ; Ahmadian, M. T ; Sharif University of Technology
    2012
    Abstract
    The geometrically nonlinear governing differential equations of motion and the corresponding boundary conditions are derived for the mechanical analysis of Timoshenko microbeams with large deflections, based on the strain gradient theory. The variational approach is employed to achieve the formulation. Hinged-hinged beams are considered as an important practical case, and their nonlinear static and free-vibration behaviors are investigated based on the derived formulation  

    Torsion of strain gradient bars

    , Article International Journal of Engineering Science ; Volume 49, Issue 9 , September , 2011 , Pages 856-866 ; 00207225 (ISSN) Kahrobaiyan, M. H ; Tajalli, S. A ; Movahhedy, M. R ; Akbari, J ; Ahmadian, M. T ; Sharif University of Technology
    2011
    Abstract
    The governing differential equation and both classical and non-classical boundary conditions of strain gradient bars are derived using variational approach. A closed-form analytical solution is obtained for static torsion and the characteristic equation, which gives the natural frequencies, is derived and analytically solved for the free torsional vibrations of the strain gradient microbars. A fixed-fixed microbar is considered as a specific case to investigate the torsional size-dependent static and free-vibration behavior of strain gradient microbars. The results of the current model are compared to those of the modified couple stress and classical theories  

    Nonlinear vibration and buckling analysis of beams using homotopy perturbation method

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 12 November 2010 through 18 November 2010, Vancouver, BC ; Volume 10 , 2010 , Pages 463-469 ; 9780791844472 (ISBN) Mojahedi, M ; Moeenfard, H ; Ahmadian, M. T ; Sharif University of Technology
    2010
    Abstract
    In this paper, homotopy perturbation and modified Lindstedt-Poincare methods are employed for nonlinear free vibrational and buckling analysis of simply supported and double-clamped beams subjected to axial loads. Mid-plane stretching effect has also been accounted in the model. Galerkin's decomposition technique is implemented to convert the dimensionless equation of the motion to nonlinear ordinary differential equation. Homotopy and modified Lindstedt-Poincare (HPM) are applied to find analytic expressions for nonlinear natural frequencies and critical axial loads of the beams. Effects of design parameters such as axial load and slenderness ratio are investigated. The analytic expressions... 

    Experimental and numerical investigation on the effect of blade number on vibrations of industrial fans

    , Article COMADEM 2010 - Advances in Maintenance and Condition Diagnosis Technologies Towards Sustainable Society, Proc. 23rd Int. Congr. Condition Monitoring and Diagnostic Engineering Management, 28 June 2010 through 2 July 2010 ; February , 2010 , Pages 473-480 ; 9784883254194 (ISBN) Behzad, M ; Ebrahimi, A ; Oskouie, S. N ; Massoumi, H ; Sharif University of Technology
    Abstract
    In this paper, the effect of blade number on the vibration behavior of industrial fans has been studied experimentally and numerically. Two similar industrial fans with similar specifications and only different blade numbers were chosen in a plant. The vibration levels were measured on these fans and the results revealed that the blade passage phenomenon is the main cause of vibrations on both fans. Both fans and their structures were modeled numerically and the performance characteristics, vibratory forces and vibration response of structure were calculated. The results showed that the number of blade has small effect on vibratory forces compared to the performance characteristics. The... 

    Reliability analysis of rotating cracked blade using modal data

    , Article 2017 International Conference on Mechanical, System and Control Engineering, ICMSC 2017, 19 May 2017 through 21 May 2017 ; 2017 , Pages 78-84 ; 9781509065295 (ISBN) Heidari, S ; Zabihollah, A ; Behzad, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    This paper deals with vibrational behaviors of blades with cracks which are key components in rotating machines. However, since modelling and analysis of real blade is a complex problem, a simplified cantilever beam with both chordwise (in X-Y plane) and flapwise (in X-Z plane) motion are modeled instead. Finite Element Method (FEM) is used to model beam and to investigate its natural frequencies with a crack. Finally a limit function using modal data is developed and reliability analysis of beam model is performed. © 2017 IEEE  

    On size-dependent free vibration and thermal buckling of axially functionally graded nanobeams in thermal environment

    , Article Applied Physics A: Materials Science and Processing ; Volume 123, Issue 5 , 2017 , 315 ; 09478396 (ISSN) Mirjavadi, S. S ; Rabby, S ; Shafiei, N ; Mohasel Afshari, B ; Kazemi, M ; Sharif University of Technology
    Springer Verlag  2017
    Abstract
    This article aims to study the buckling and free vibrational behavior of axially functionally graded (AFG) nanobeam under thermal effect for the first time. The temperature is considered to be constant and variable along thickness and different boundary conditions. The governing equation is developed using the Hamilton’s principle considering the axial force. The Euler–Bernoulli beam theory is used to model the nanobeam, and Eringen’s nonlocal elasticity theory is utilized to consider the nano-size effect. The generalized differential quadrature method (GDQM) is used to solve the equations. The small-scale parameter, AFG power index, thermal distribution, different functions of temperature... 

    Vibrational analysis of Ag, Cu and Ni nanobeams using a hybrid continuum-atomistic model

    , Article International Journal of Mechanical Sciences ; Volume 165 , 2020 Ghafouri Pourkermani, A ; Azizi, B ; Nejat Pishkenari, H ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    An important issue in the study of the nanostructures behaviors is the surface effects, which increases with the increase of the surface-to-volume ratio. Continuum theories are capable of modeling structures at micro and larger scales with enough precision and low computational costs. However, these theories are unable to predict the mechanical properties of nanostructures accurately. On the other hand, due to their high precision, atomistic modeling techniques are extensively employed for the study of systems at nanoscale; however, computational costs of these techniques are relatively high. In this research, we aim to study the vibrational behavior of nanobeams made of three FCC metals;... 

    Nanoscale vibrational behavior of single-layered graphene sheets

    , Article ASME 2007 International Mechanical Engineering Congress and Exposition, IMECE 2007, 11 November 2007 through 15 November 2007 ; Volume 11 , 2007 , Pages 229-235 ; 079184305X (ISBN) Sakhaee-Pour, A ; Ahmadian, M. T ; Vafai, A ; ASME ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2007
    Abstract
    Molecular structural mechanics approach is implemented to investigate vibrational behavior of single-layered graphene sheets. By using the atomistic modeling, mode shapes and natural frequencies are obtained. Vibration analysis is performed under different chirality and boundary conditions. Numerical results from the finite element technique are applied to develop empirical equations via a statistical multiple nonlinear regression model. With the proposed empirical equations, fundamental frequencies of single-layered graphene sheets under considered boundary conditions can be predicted within 3 percent accuracy. Copyright © 2007 by ASME  

    Modeling vibrational behavior of silicon nanowires using accelerated molecular dynamics simulations

    , Article Scientia Iranica ; Volume 27, Issue 2 , 2021 , Pages 819-827 ; 10263098 (ISSN) Nejat Pishkenari, H ; Delafrouz, P ; Sharif University of Technology
    Sharif University of Technology  2021
    Abstract
    The classical methods utilized for modeling nano-scale systems are not practical because of the enlarged surface e ects that appear at small dimensions. Contrarily, implementing more accurate methods is followed by prolonged computations as these methods are highly dependent on quantum and atomistic models, and they can be employed for very small sizes in brief time periods. In order to speed up the Molecular Dynamics (MD) simulations of the silicon structures, Coarse-Graining (CG) models are put forward in this research. The procedure involves establishing a map between the main structure's atoms and the beads comprising the CG model and modifying the parameters of the system so that the... 

    Effect of axially graded constraining layer on the free vibration properties of three layered sandwich beams with magnetorheological fluid core

    , Article Composite Structures ; Volume 255 , 2021 ; 02638223 (ISSN) Omidi Soroor, A ; Asgari, M ; Haddadpour, H ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The free linear vibration of an adaptive sandwich beam consisting of a frequency and field-dependent magnetorheological fluid core and an axially functionally graded constraining layer is investigated. The Euler-Bernoulli and Timoshenko beam theories are utilized for defining the longitudinal and lateral deformation of the sandwich beam. The Rayleigh-Ritz method is used to derive the frequency-dependent eigenvalue problem through the kinetic and strain energy expressions of the sandwich beam. In order to deal with the frequency dependency of the core, the approached complex eigenmodes method is implemented. The validity of the formulation and solution method is confirmed through comparison... 

    Shell-like instability of large diameter single-walled carbon nanotubes conveying fluid

    , Article Journal of Mechanical Science and Technology ; Volume 26, Issue 11 , 2012 , Pages 3389-3397 ; 1738494X (ISSN) Ali-Akbari, H. R ; Firouz Abadi, R. D ; Haddadpour, H ; Noorian, M. A ; Sharif University of Technology
    2012
    Abstract
    The instability of large diameter single-walled carbon nanotubes (SWCNTs) conveying fluid is investigated based on the molecular mechanics. Using the modal expansion for structural displacements, the governing equations of coupled fluid-structural dynamics of SWCNTs are derived. The natural frequencies and mode shape of the SWCNTs are obtained based on the molecular structural mechanics to account for the effect of chirality and discrete nature of SWCNTs. The results show that the vibrational behavior of large diameter SWCNTs conveying fluid is size dependent, but the effect of chirality is negligible. The obtained results are compared with the equivalent continuum-based model in the... 

    Static and vibrational analysis of fullerene using a newly designed spherical super element

    , Article Scientia Iranica ; Volume 19, Issue 5 , 2012 , Pages 1316-1323 ; 10263098 (ISSN) Nasiri Sarvi, M ; Ahmadian, M. T ; Sharif University of Technology
    2012
    Abstract
    Accurate prediction of static and dynamic response of nano structures under external excitations has been one of the interests of scientists in the last decade. Several applications of nano machines make it necessary to analyze their components, such as nano bearing, precisely. In this paper, the static and vibrational behavior of a fullerene as a sensitive part of nano bearing under external forces is simulated by a newly designed spherical super element. This super element is designed in such a way that the user can select as many numbers of nodes as desired, so that it can be implemented in different desired precisions. In this study, a 228-node super element, which is similar to a hollow... 

    Non-linear vibration of dagger-shaped atomic force microscope cantilevers by considering the Hertzian contact theory

    , Article Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics ; Volume 225, Issue 2 , 2011 , Pages 77-94 ; 14644193 (ISSN) Sadeghi, A ; Zohoor, H ; Sharif University of Technology
    2011
    Abstract
    The non-linear flexural vibration for a dagger-shaped atomic force microscope cantilever has been investigated using the Timoshenko beam theory. In this article, the normal and tangential tip-sample interaction forces are found from Hertzian contact model and the effects of the geometry, normal and lateral contact stiffness, height of the tip, thickness of the beam, the angle between the cantilever and the sample surface and breadth and height taper ratios on the non-linear frequency to linear frequency ratio have been studied. The differential quadrature method (DQM) is employed to solve the non-linear differential equations of motion. The results show that the softening behaviour is seen... 

    A geometrically nonlinear beam model based on the second strain gradient theory

    , Article International Journal of Engineering Science ; Volume 91 , June , 2015 , Pages 63-75 ; 00207225 (ISSN) Karparvarfard, S. M. H ; Asghari, M ; Vatankhah, R ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    The geometrically nonlinear governing differential equation of motion and corresponding boundary conditions of small-scale Euler-Bernoulli beams are achieved using the second strain gradient theory. This theory is a non-classical continuum theory capable of capturing the size effects. The appearance of many higher-order material constants in the formulation can certify that it appropriately assesses the behavior of extremely small-scale structures. A hinged-hinged beam is chosen as an example to lay out the nonlinear size-dependent static bending and free vibration behaviors of the derived formulation. The results of the new model are compared with the previously obtained results based on... 

    A nonlinear Timoshenko beam formulation based on the modified couple stress theory

    , Article International Journal of Engineering Science ; Volume 48, Issue 12 , 2010 , Pages 1749-1761 ; 00207225 (ISSN) Asghari, M ; Kahrobaiyan, M. H ; Ahmadian, M. T ; Sharif University of Technology
    Abstract
    This paper presents a nonlinear size-dependent Timoshenko beam model based on the modified couple stress theory, a non-classical continuum theory capable of capturing the size effects. The nonlinear behavior of the new model is due to the present of induced mid-plane stretching, a prevalent phenomenon in beams with two immovable supports. The Hamilton principle is employed to determine the governing partial differential equations as well as the boundary conditions. A hinged-hinged beam is chosen as an example to delineate the nonlinear size-dependent static and free-vibration behaviors of the derived formulation. The solution for the static bending is obtained numerically. The solution for...