Loading...
Search for: vickers-hardness-testing
0.006 seconds

    Relationship between the stored energy and indentation hardness of copper after compression test: Models and measurements

    , Article Journal of Materials Science ; Volume 43, Issue 10 , 2008 , Pages 3500-3504 ; 00222461 (ISSN) Kazeminezhad, M ; Sharif University of Technology
    2008
    Abstract
    Utilizing the differential scanning calorimetry (DSC) and Vickers hardness tests, the relationship between the stored energy and indentation hardness of copper after compression test is achieved experimentally. Three dislocation models are utilized to develop the relationships between the stored energy and hardness for justifying the experimental relationship. The relationships show that the stored energy is increased by increasing the hardness, non-linearly. By comparing the models' results with the experimental data, the validity of each model at different ranges of hardness is determined. © 2008 Springer Science+Business Media, LLC  

    An electron back-scattered diffraction study on the microstructure evolution of severely deformed aluminum AI6061 alloy

    , Article IOP Conference Series: Materials Science and Engineering ; Vol. 63, Issue. 1 , 30 June- 4 July , 2014 ; ISSN: 17578981 Vaseghi, M ; Taheri, A. K ; Kim, H. S ; Sharif University of Technology
    Abstract
    In this paper dynamic strain ageing behavior in an Al-Mg-Si alloy related to equal channel angular pressing (ECAP) was investigated. In order to examine the combined plastic deformation and ageing effects on microstructure evolutions and strengthening characteristics, the Al6061 alloy were subjected to φ=90° ECAP die for up to 4 passes via route Bc at high temperatures. For investigating the effects of ageing temperature and strain rate in ECAP, Vickers hardness tests were performed. The combination of the ECAP process with dynamic ageing at higher temperatures resulted in a significant increase in hardness. The microstructural evolution of the samples was studied using electron... 

    Microstructural evolution, mechanical properties, and corrosion resistance of a heat-treated Mg alloy for the bio-medical application

    , Article Journal of Magnesium and Alloys ; Volume 7, Issue 1 , 2019 , Pages 80-89 ; 22139567 (ISSN) Janbozorgi, M ; Karimi Taheri, K ; Karimi Taheri, A ; Sharif University of Technology
    National Engg. Reaserch Center for Magnesium Alloys  2019
    Abstract
    During the recent years, some Mg based alloys have extensively been considered as a new generation of degradable and absorbable bio-medical materials. In this work, the Mg–2Zn–1Gd–1Ca (wt%) alloy as a new metallic bio-material was produced by the casting process followed by the heat treatment. The samples of the alloy were solution treated at temperatures of 500, 550, and 600 °C and then quench aged at temperatures of 125, 150, and 175 °C. The results of SEM-EDS examinations indicated that the alloy microstructure consists of α-Mg matrix and the Ca2Mg6Zn3 and Mg3Gd2Zn3 secondary phases. With regard to the results of Vickers hardness test, the temperatures of 500 °C and 150 °C were selected...