Loading...
Search for: viscous-dissipation
0.003 seconds
Total 33 records

    Numerical and Analytical Analysis of Electroosmotic Flow of Non-Newtonian Fluids with Temperature Dependent Properties in the presence of Pressure Gradient in a Slit Micro-Channel

    , M.Sc. Thesis Sharif University of Technology Babaie, Ashkan (Author) ; Saidi, Mohammad Hassan (Supervisor)
    Abstract
    Recent developments in MEMS related areas have increased the demand for practical and novel pumping methods. Utilizing Electroosmotic force for flow generation in microchannels has become really popular recently, because of its reliable operation and control. One of potential applications of MEMS devices is biological and medical analysis which most samples are considered to be non-Newtonian; consequently, thermal transport characteristics of non-Newtonian electroosmotic flow of power-law fluids is investigated in this paper. In this study, thermal and hydrodynamic behavior of non-Newtonian electroosmotic flow of power-law model in a slit microchannel is analyzed. It is assumed that the flow... 

    Combined Electroosmotically and Pressure Driven Flow of Power-Law Fluids in Rectangular Microchannels

    , M.Sc. Thesis Sharif University of Technology Vakili, Mohammad Ali (Author) ; Saidi, Mohammad Hassan (Supervisor) ; Mozafari, Ali Asghar (Supervisor)
    Abstract
    Electroosmosis is the predominant mechanism for flow generation in lab-on-a-chip devices. These microfluidic devices are microscale laboratories on a microchip that can perform clinical diagnoses. Since most biofluids encountered in these devices are considered to be non-Newtonian and the cross section of microchannels in these devices is close to a rectangular shape, In this study, the hydrodynamically and thermally fully developed combined electroosmotically and pressure driven flow of power-law fluids in rectangular microchannels is analyzed. The governing equations are first made dimensionless and then transformed into new ones based on the computational parameters which provide mesh... 

    Modeling and CFD simulation of a mixed-convection flow of regular fluids and nanofluids in vertical porous and regular channels

    , Article Heat Transfer - Asian Research ; Vol. 43, issue. 3 , May , 2014 , pp. 243-269 ; ISSN: 1523-1496 Hashemi Amrei, S. M. H ; Dehkordi, A. M ; Sharif University of Technology
    Abstract
    In this article, the problem of combined forced and free convection in vertical porous and regular channels for both regular fluids and nanofluids has been solved using the CFD technique in the entrance regions of momentum and heat transfer taking into account the influences of viscous heating and inertial force. In this regard, various types of viscous dissipation models reported in the literature such as the Darcy model, the power of the drag force model, and the clear fluid-compatible model were applied. In the case of nanofluid flow, both the Brownian and thermophoresis molecular transfer mechanisms were considered. The dimensionless distributions of velocity, temperature, and the volume... 

    Entropy generation in thermally developing laminar forced convection through a slit microchannel

    , Article ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels Collocated with 3rd Joint US-European Fluids Engineering Summer Meeting, ICNMM2010, 1 August 2010 through 5 August 2010, Montreal, QC ; Issue PARTS A AND B , 2010 , Pages 515-526 ; 9780791854501 (ISBN) Sadeghi, A ; Baghani, M ; Saidi, M. H ; Sharif University of Technology
    2010
    Abstract
    The issue of entropy generation in laminar forced convection of a Newtonian fluid through a slit microchannel is analytically investigated by taking the viscous dissipation effect, the slip velocity and the temperature jump at the wall into account. Flow is considered to be hydrodynamically fully developed but thermally developing. The energy equation is solved by means of integral transform. The results demonstrate that to increase Knudsen number is to decrease entropy generation, while the effect of increasing values of Brinkman number and the group parameter is to increase entropy generation. Also it is disclosed that in the thermal entrance region the average entropy generation number... 

    Second law analysis for extended graetz problem including viscous dissipation in microtubes

    , Article ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM2010 Collocated with 3rd Joint US-European Fluids Engineering Summer Meeting, Montreal, QC, 1 August 2010 through 5 August 2010 ; Issue PARTS A AND B , 2010 , Pages 503-514 ; 9780791854501 (ISBN) Sadeghi, A ; Baghani, M ; Saidi, M. H ; Fluids Engineering Division ; Sharif University of Technology
    2010
    Abstract
    The entropy generation rate has become a useful tool for evaluating the intrinsic irreversibilities associated with a given process or device. This work presents an analytical solution for entropy generation in hydrodynamically fully developed thermally developing laminar flow in a microtube. The rarefaction effects as well as viscous heating effects are taken into consideration, but axial conduction is neglected. Using fully developed velocity profile, the energy equation is solved by means of integral transform. The solution is validated by comparing the local Nusselt numbers against existing literature data. From the results it is realized that the entropy generation decreases as Knudsen... 

    Second law analysis of slip flow forced convection through a parallel plate microchannel

    , Article Nanoscale and Microscale Thermophysical Engineering ; Volume 14, Issue 4 , 2010 , Pages 209-228 ; 15567265 (ISSN) Sadeghi, A ; Saidi, M. H ; Sharif University of Technology
    Abstract
    In the present work, the second law of thermodynamics analysis has been carried out for steady-state fully developed laminar gas flow in a parallel plate microchannel with asymmetrically heated walls. The rarefaction effects as well as viscous heating effects are taken into consideration. Closed-form expressions are obtained for velocity and temperature distributions and entropy generation rates. The results demonstrate that increasing values of the wall heat fluxes ratio result in greater entropy generation for positive Brinkman numbers, whereas the opposite is true for negative values of Brinkman. However, the effect of the wall heat fluxes ratio on entropy generation becomes insignificant... 

    Electrowetting induced droplet jumping over a bump

    , Article Extreme Mechanics Letters ; Volume 32 , 2019 ; 23524316 (ISSN) ; https://www.sciencedirect.com/science/article/pii/S2352431619300410 Merdasi, A ; Daeian, M. A ; Moosavi, A ; Shafii, M. B ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    We study electrowetting induced droplet jumping over a system consisting of a flat surface and a topographical bump mounted on the surface. Different bump shapes including triangular and elliptical configurations are considered and the results are compared with the results of the flat surface. The results indicate that droplet jumping is enhanced over the bumps and the droplet jumps to larger heights compared with the flat surface because of the lower viscous dissipation. The shape of the bump can considerably affect the droplet dynamics. Between the considered shapes the triangular bump provides a larger dynamic and the droplet on the surface with this bump can jump with larger velocity.... 

    Numerical simulation using a modified solver within OpenFOAM for compressible viscous flows

    , Article European Journal of Computational Mechanics ; Volume 28, Issue 6 , 2020 , Pages 541-572 Ghazanfari, V ; Salehi, A. A ; Keshtkar, A ; Shadman, M. M ; Askari, M. H ; Sharif University of Technology
    River Publishers  2020
    Abstract
    In this work, we attempted to develop an Implicit Coupled Density-Based (ICDB) solver using LU-SGS algorithm based on the AUSM+ up scheme in OpenFOAM. Then sonicFoam solver was modified to include viscous dissipation in order to improve its capability to capture shock wave and aerothermal variables. The details of the ICDB solver as well as key implementation details of the viscous dissipation to energy equation were introduced. Finally, two benchmark tests of hypersonic airflow over a flat plate and a 2-D cylinder were simulated to show the accuracy of ICDB solver. To verify and validate the ICDB solver, the obtained results were compared with other published experimental data. It was... 

    Graetz problem extended to mixed electroosmotically and pressure-driven flow

    , Article Journal of Thermophysics and Heat Transfer ; Volume 26, Issue 1 , 2012 , Pages 123-133 ; 08878722 (ISSN) Sadeghi, A ; Veisi, H ; Saidi, M. H ; Chakraborty, S ; Sharif University of Technology
    2012
    Abstract
    Thermally developing mixed electroosmotically and pressure-driven flow in a parallel plate microchannel with a step change in wall temperature is considered in the framework of an extended Graetz problem. Both Joule heating and viscous dissipation effects are taken into consideration. Expressions for the dimensionless temperature and Nusselt number in the form of infinite series are presented. In general, the associated eigenvalue problem is solved numerically. Nevertheless, an analytical solution is also presented for axial locations close to the entrance. Comparisons are made between the present results and those obtained by approximating the electroosmotic velocity with the... 

    Thermal transport characteristics of non-newtonian electroosmotic flow in a slit microchannel

    , Article ASME 2011 9th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2011, 19 June 2011 through 22 June 2011 ; Volume 1 , June , 2011 , Pages 169-176 ; 9780791844632 (ISBN) Babaie, A ; Sadeghi, A ; Saidi, M. H ; Sharif University of Technology
    2011
    Abstract
    Electroosmosis has many applications in fluid delivery at microscale, sample collection, detection, mixing and separation of various biological and chemical species. In biological applications, most fluids are known to be non-Newtonian. Therefore, the study of thermal features of non-Newtonian electroosmotic flow is of great importance for scientific communities. In the present work, the fully developed electroosmotic flow of power-law fluids in a slit microchannel is investigated. The related equations are transformed into non-dimensional forms and necessary changes are made to adapt them for non-Newtonian fluids of power-law model. Results show that depending on different flow parameters... 

    Mixed convection in a vertical channel containing porous and viscous fluid regions with viscous dissipation and inertial effects: A perturbation solution

    , Article Journal of Heat Transfer ; Volume 133, Issue 9 , 2011 ; 00221481 (ISSN) Hajipour, M ; Dehkordi, A. M ; Sharif University of Technology
    2011
    Abstract
    In this paper, combined forced and natural convection in a vertical channel containing both porous and viscous regions taking into account the influences of inertial force and viscous dissipation has been studied. In this regard, fully developed fluid flow in the porous region was modeled using the Brinkman-Forchheimer extended Darcy model. To solve governing equations of both the porous and viscous regions including thermal energy and momentum equations, a two-parameter perturbation method was applied. The velocity and temperature distributions of both the regions were obtained in terms of various parameters such as inertial force, Grashof, Reynolds, and Brinkman numbers, as well as various... 

    Transient and steady-state forced convection to power-law fluids in the thermal entrance region of circular ducts: Effects of viscous dissipation, variable viscosity, and axial conduction

    , Article Energy Conversion and Management ; Volume 51, Issue 5 , May , 2010 , Pages 1065-1074 ; 01968904 (ISSN) Molaei Dehkordi, A ; Memari, M ; Sharif University of Technology
    2010
    Abstract
    A numerical study was conducted on the transient behavior of a hydrodynamically fully developed, laminar flow of power-law fluids in the thermally developing entrance region of circular ducts with taking into account the effects of viscous dissipation, axial conduction, and variations of viscosity with temperature. In this regard, the unsteady-state thermal energy and momentum equations were solved numerically using a finite-difference method, whereas the steady-state thermal energy equation with constant wall heat flux as the boundary condition was solved analytically as the initial condition of the former. The numerical procedure used in the present work was validated with an analytical... 

    Second law analysis of slip flow heat transfer in annulus microchannel

    , Article Proceedings of the ASME Summer Heat Transfer Conference 2009, HT2009, 19 July 2009 through 23 July 2009, San Francisco, CA ; Volume 1 , 2009 , Pages 321-330 ; 9780791843567 (ISBN) Sadeghi, A ; Asgarshamsi, A ; Saidi, M. H ; Sharif University of Technology
    Abstract
    In the present work, the second law of thermodynamics analysis has been carried out for steady state hydrodynamically and thermally fully developed laminar gas flow in annulus microchannels with asymmetrically heated walls. The rarefaction effects are taken into consideration using first order slip velocity and temperature jump boundary conditions. Viscous heating is also included for both the hot wall and the cold wall cases. Using the velocity distribution obtained in earlier works, the energy equation is solved to get analytically the temperature distribution and consequently to compute the entropy generation rate. The effects of rarefaction and the annulus geometrical aspect ratio on... 

    Numerical simulation of viscous dissipation in a micropolar fluid flow through a porous medium

    , Article Journal of Applied Mechanics and Technical Physics ; Volume 60, Issue 6 , 2019 , Pages 996-1004 ; 00218944 (ISSN) Ahmad, S ; Ashraf, M ; Ali, K ; Sharif University of Technology]
    Pleiades Publishing  2019
    Abstract
    Taking into account the effect of viscous dissipation in the energy equation, we numerically explore the flow of an incompressible micropolar fluid with heat and mass transfer through a resistive porous medium between plane channel walls. By exploiting a similarity transformation, the governing partial differential equations are transformed into a system of nonlinear coupled ordinary differential equations, which are solved numerically for various problem parameters by means of quasi-linearization. It is found that the effect of viscous dissipation is to increase the heat and mass transfer rate at both the lower and upper walls of the channel. © 2019, Pleiades Publishing, Ltd  

    Comprehensive hydrothermal analysis of an inclined mini-channel with fin array: by dual/multi-relaxation-time LBM and experimental process on SiO2-glycol rheological/thermal characteristics

    , Article International Journal of Numerical Methods for Heat and Fluid Flow ; Volume 31, Issue 7 , 2021 , Pages 2405-2429 ; 09615539 (ISSN) Kamali, D ; Hejri, S ; Akbar, N ; Hasani Malekshah, E ; Sharif University of Technology
    Emerald Group Holdings Ltd  2021
    Abstract
    Purpose: The purpose of this study is to present a comprehensive hydrothermal analysis on an inclined mini-channel using numerical and experimental techniques. The fin array acts as heat source within the channel, and a wavy wall located at the top of the channel is heat sink. The side walls are insulated with curved profiles. Also, the channel is inclined with four known inclination angles. To solve the governing equations, the dual-multi-relaxation-time lattice Boltzmann method with D2Q9 and D2Q5 lattice models for flow and temperature fields is used, respectively. Also, the channel is filled with SiO2-glycol nanofluid. Design/methodology/approach: Identifying the behavior of a thermal... 

    Impact of swimming gyrotactic microorganisms and viscous dissipation on nanoparticles flow through a permeable medium: a numerical assessment

    , Article Journal of Nanomaterials ; Volume 2022 , 2022 ; 16874110 (ISSN) Ahmad, S ; Younis, J ; Ali, K ; Rizwan, M ; Ashraf, M ; Abd El Salam, M. A ; Sharif University of Technology
    Hindawi Limited  2022
    Abstract
    In this paper, heat and mass transportation flow of swimming gyrotactic microorganisms (microbes) and solid nanoparticles under the viscous dissipation effect is investigated. The flow model PDEs are renovated with ordinary ones using suitable boundary layer approximations. The system governing the flow model dimensionless equations as well as boundary conditions is numerically treated with the SOR (successive over relaxation) technique. The flow, heat, and mass transport characteristics are examined against the prime parameters. A comparison is examined to be in a good agreement with the earlier results. It is found here that flow and thermal characteristics of the problem are substantially... 

    Thermal transport characteristics pertinent to electrokinetic flow of power-law fluids in rectangular microchannels

    , Article International Journal of Thermal Sciences ; Vol. 79, issue , 2014 , p. 76-89 Vakili, M. A ; Saidi, M. H ; Sadeghi, A ; Sharif University of Technology
    Abstract
    In the present study, the thermal characteristics of electroosmotic flow of power-law fluids in rectangular microchannels in the presence of pressure gradient are investigated. The governing equations for fully developed flow under H1 thermal boundary conditions are first made dimensionless and subsequently solved through a finite difference procedure for a non-uniform grid. The influence of the major parameters on thermal features of the flow such as the temperature distribution and Nusselt number is discussed by a complete parametric study. The results reveal that the channel aspect ratio and the non-Newtonian characteristic of the fluid can affect the thermal behavior of the flow. It is... 

    Electroosmotic flow of power-law fluids with temperature dependent properties

    , Article Journal of Non-Newtonian Fluid Mechanics ; Volume 185-186 , 2012 , Pages 49-57 ; 03770257 (ISSN) Babaie, A ; Saidi, M. H ; Sadeghi, A ; Sharif University of Technology
    Elsevier  2012
    Abstract
    The influence of variable fluid properties on mixed electroosmotic and pressure driven flow of non-Newtonian fluids is investigated in this paper. The non-linear coupled energy and momentum equations are solved by means of an iterative numerical approach. The results reveal that the temperature dependent effects only become significant at very high values of the Debye-Hückel parameter in case of combined electroosmotic and pressure driven flow and could safely be neglected in other cases. It is observed that the physical properties variation lead to a higher mean velocity in case of pressure assisted flow and a lower mean velocity in case of pressure opposed flow. Furthermore, the... 

    Transient behavior of fluid flow and heat transfer in vertical channels partially filled with porous medium: Effects of inertial term and viscous dissipation

    , Article Energy Conversion and Management ; Volume 61 , September , 2012 , Pages 1-7 ; 01968904 (ISSN) Hajipour, M ; Molaei Dehkordi, A ; Sharif University of Technology
    Elsevier  2012
    Abstract
    In this article, transient hydrodynamic and heat-transfer behavior of Newtonian fluid flow in vertical parallel-plate channels partially filled with a porous medium has been investigated numerically. In this regard, the influences of macroscopic local inertial term and the viscous heating due to the viscous dissipation were taken into account in the momentum equations of porous region and the thermal energy equations, respectively. Moreover, Forchheimer-Brinkman extended Darcy model was used to model fluid flow in the porous region. In addition, an analytical solution was obtained in the case of negligible Brinkman and Forchheimer number values at the steady-state conditions. The predicted... 

    Hydrodynamic and thermal characteristics of combined electroosmotic and pressure driven flow in a microannulus

    , Article Journal of Heat Transfer ; Volume 134, Issue 10 , 2012 ; 00221481 (ISSN) Yavari, H ; Sadeghi, A ; Saidi, M. H ; Sharif University of Technology
    ASME  2012
    Abstract
    The present study considers both the hydrodynamic and thermal characteristics of combined electroosmotic and pressure driven flow in a microannulus. Analytical solutions are presented using the Debye-Hückel linearization along with the uniform Joule heating and negligible viscous dissipation assumptions, whereas exact results are achieved numerically. Here, the range of validity for the Debye-Hückel linearization is found to be about two times of that for a parallel plate microchannel. Accordingly, this linearization may successfully be used to evaluate the potential and velocity distributions up to the zeta potentials of 100 mV, provided that the dimensionless Debye-Hückel parameter is...