Search for: visual-detection
0.006 seconds

    Ratiometric fluorescent nanoprobes for visual detection: Design principles and recent advances - A review

    , Article Analytica Chimica Acta ; Volume 1079 , 2019 , Pages 30-58 ; 00032670 (ISSN) Bigdeli, A ; Ghasemi, F ; Abbasi Moayed, S ; Shahrajabian, M ; Fahimi Kashani, N ; Jafarinejad, S ; Farahmand Nejad, M. A ; Hormozi Nezhad, M. R ; Sharif University of Technology
    Elsevier B.V  2019
    Signal generation techniques for visual detection of analytes have received a great deal of attention in various sensing fields. These approaches are considered to be advantageous when instrumentation cannot be employed, such as for on-site assays, point-of-care tests, and he althcare diagnostics in resource-constrained areas. Amongst various visual detection approaches explored for non-invasive quantitative measurements, ratiometric fluorescence sensing has received particular attention as a potential method to overcome the limitations of intensity-based probes. This technique relies on changes in the intensity of two or more emission bands (induced by an analyte), resulting in an effective... 

    Design of a ratiometric fluorescent probe for naked eye detection of dopamine

    , Article Analytical Methods ; Volume 9, Issue 23 , 2017 , Pages 3505-3512 ; 17599660 (ISSN) Farahmand Nejad, M. A ; Hormozi Nezhad, M. R ; Sharif University of Technology
    A simple and effective ratiometric fluorescence sensor for selective detection of dopamine (DA) in alkaline media has been developed by simply mixing thioglycolic acid (TGA) functionalized orange fluorescent cadmium telluride (CdTe) quantum dots (QDs) with amino-functionalized blue fluorescent carbon nanodots (CDs). Under a single excitation wavelength of 365 nm, the sensor exhibits dual-emissions centered at 445 and 603 nm. The fluorescence of CdTe QDs is selectively quenched by DA, whereas the fluorescence of CDs is insensitive to the analyte. In the presence of different amounts of DA, the variations in the dual emission intensity ratios exhibit a continuous color change from pink to... 

    A smart-phone based ratiometric nanoprobe for label-free detection of methyl parathion

    , Article Sensors and Actuators, B: Chemical ; Volume 322 , 2020 Fahimi Kashani, N ; Hormozi Nezhad, M. R ; Sharif University of Technology
    Elsevier B.V  2020
    The widespread use of pesticides in pest management has boosted the demands for developing highly sensitive probes for on-site monitoring. Herein we presented a sensitive enzyme-free ratiometric probe for determination of methyl parathion (MP), as an organophosphate pesticide using TGA-capped CdTe QDs and carbon dots (CDs). Unlike previous methods in which hydrolysis product of MP is instrumental in the response of the sensors, here, self-assembly of cetyltrimethylammonium bromide (CTAB) on the surface of non-modified yellow-emissive CdTe QDs facilitates the quenching of CTAB-QDs upon addition of MP while the fluorescence intensity of CDs remains constant. Using a smartphone, the ratiometric... 

    A ratiometric fluorescence nanoprobe using CdTe QDs for fast detection of carbaryl insecticide in apple

    , Article Talanta ; Volume 221 , 2021 ; 00399140 (ISSN) Shahdost fard, F ; Fahimi Kashani, N ; Hormozi nezhad, M. R ; Sharif University of Technology
    Elsevier B.V  2021
    In this study, a novel, simple and sensitive ratiometric fluorescence method is presented for the detection of very low quantities of the carbaryl in Iranian apple using cadmium telluride quantum dots (CdTe QDs) nanoprobe. The principle of the proposed strategy relies on the rapid hydrolysis of the carbaryl under an alkaline condition and production of the 1-naphthol with a blue emission at 470 nm. Besides, using the CdTe QDs with a yellow emission at 580 nm, as a reference, improves the visual tracking of carbaryl through changes in color tonality. The herein described methodology is applied for enzyme-free visual detection of carbaryl with satisfactory results in the presence of other...