Loading...
Search for: voltage-dip
0.006 seconds

    An analytical study for low voltage ride through of the brushless doubly-fed induction generator during asymmetrical voltage dips

    , Article Renewable Energy ; Volume 115 , 2018 , Pages 64-75 ; 09601481 (ISSN) Gholizadeh, M ; Oraee, A ; Tohidi, S ; Oraee, H ; McMahon, R. A ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The Brushless Doubly-fed Induction Generator (BDFIG) has high potential for wind energy systems, especially for offshore applications where minimum maintenance is vital. The machine low voltage ride through (LVRT) capability in the light of current grid code requirements was investigated using a precise dynamic model. This is particularly important for future multi- MW BDFIGs. This paper shows the necessity for improvements of the BDFIG LVRT capability with presenting a comprehensive analytical study during asymmetrical voltage dips. Analytical studies are conducted to extract a more precise equivalent circuit model of the BDFIG used for analyzing machine dynamic behavior under various fault... 

    Low voltage ride-through of DFIG and brushless DFIG: Similarities and differences

    , Article Electric Power Systems Research ; Vol. 110 , May , 2014 , p. 64-72 ; ISSN: 03787796 Tohidi, S ; Tavner, P ; McMahon, R ; Oraee, H ; Zolghadri, M. R ; Shao, S ; Abdi, E ; Sharif University of Technology
    Abstract
    The brushless doubly fed induction generator (BDFIG) has been proposed as a viable alternative in wind turbines to the commonly used doubly fed induction generator (DFIG). The BDFIG retains the benefits of the DFIG, i.e. variable speed operation with a partially rated converter, but without the use of brush gear and slip rings, thereby conferring enhanced reliability. As low voltage ride-through (LVRT) performance of the DFIG-based wind turbine is well understood, this paper aims to analyze LVRT behavior of the BDFIG-based wind turbine in a similar way. In order to achieve this goal, the equivalence between their two-axis model parameters is investigated. The variation of flux linkages,... 

    Design and Implement a High Voltage Switching DC Power Supply Based on Voltage Multiplier for High Regulation and Controllable Output Voltage

    , M.Sc. Thesis Sharif University of Technology Ahmadi, Abbas (Author) ; Kaboli, Shahriyar (Supervisor)
    Abstract
    High DC voltage is widely used in many applications such as X-Ray machines ,CRT , photocopy machines and etc. One idea to produce this high DC voltage is to use transformers, but it will be large in volume. We can increase frequency to reduce the volume of transformers but high voltage of primary and secondary winding will limited this volume reduction. Furthermore high turn ratio in transformers increases non idealities that cause voltage and current spike, and increase loss and noise. The main goal of this thesis is to reduce differential mode voltages on transformers to reduce the volume of power supply. Voltage multiplier will be used to reduce differential mode voltage. Voltage... 

    Low voltage ride-through capability improvement of DFIG-based wind turbines under unbalanced voltage dips

    , Article International Journal of Electrical Power and Energy Systems ; Vol. 60,Issue , 2014 , pp. 82-95 ; ISSN: 01420615 Rahimi, M ; Parniani, M ; Sharif University of Technology
    Abstract
    This paper proposes a competent and effective scheme to enhance the ride-through capability of DFIG-based wind turbines under unbalanced voltage dip conditions. The proposed method is realized through joint use of the rotor-side converter control and a three-phase stator damping resistor (SDR) placed in series with the stator windings. By means of an asymmetrical SDR idea, during the unbalanced voltage dip the SDR resistors are activated only in phase(s) experiencing low voltage. Then, the rotor current is controlled such that no unbalance voltage appears on the stator voltage. The proposed ride-through approach limits the peak values of the rotor inrush current, electromagnetic torque and... 

    Appropriate crowbar protection for improvement of brushless DFIG LVRT during asymmetrical voltage dips

    , Article International Journal of Electrical Power and Energy Systems ; Volume 95 , 2018 , Pages 1-10 ; 01420615 (ISSN) Gholizadeh, M ; Tohidi, S ; Oraee, A ; Oraee, H ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    This paper proposes effective approach for determining appropriate crowbar resistance value to be able to improve the brushless doubly fed induction generator ride through capability during any asymmetrical voltage dip scenarios. The brushless DFIG has great potential for wind power plants particularly in offshore applications where maintenance is a major concern. Dynamic behavior of the machine is studied using two axis model and a more precise equivalent circuit model is extracted for analyzing machine behavior under fault conditions. Important limits and constraints in the use of crowbar are identified and discussed in detail. It is shown that large crowbar values can lead to considerable... 

    Optimal selection of voltage sag mitigation solution based on event tree method

    , Article PQ 2012: 8th International Conference - 2012 Electric Power Quality and Supply Reliability, Conference Proceedings ; 2012 , p. 119-124 ; ISBN: 9781470000000 Yasir, M ; Kazemi, S ; Lehtonen, M ; Fotuhi-Firuzabad, M ; Sharif University of Technology
    Abstract
    Modern commercial operations consist of critical equipments that are more susceptible to voltage sag events. The consistent and smooth running of these operations is often disrupted by voltage sags. Diverse range of solutions exist which can enhance the ride through capability of sensitive devices. This paper presents various voltage dip mitigation solutions and a methodology for analyzing the effectiveness and practical viability of these solutions. The proposed approach is based on event tree method which gives an indication about the extent of process interruption in the event of voltage sags. A case study is conducted in the paper with different combinations of practical mitigation... 

    Performance of the brushless doubly-fed machine under normal and fault conditions

    , Article IET Electric Power Applications ; Volume 6, Issue 9 , Volume 6, Issue 9 , 2012 , Pages 621-627 ; 17518660 (ISSN) Tohidi, S ; Zolghadri, M. R ; Oraee, H ; Tavner, P ; Abdi, E ; Logan, T ; Sharif University of Technology
    2012
    Abstract
    In this study, the steady-state operation of the brushless doubly-fed machine (BDFM) in various modes is physically elaborated and the active power flow and torque analysis are presented for each operating mode alongside confirmatory experimental results on a 4/8 pole D160 size machine. The machine behaviour in asynchronous operating modes is described similar to the conventional induction machines with corresponding pole numbers. Moreover, its performance in synchronous mode is shown to be similar to synchronous machines. On the basis of the above, the BDFM performance is further analysed under two possible fault conditions: first, a controller or converter fault leading to loss of... 

    Optimal selection of voltage sag mitigation solution based on event tree method

    , Article PQ 2012: 8th International Conference - 2012 Electric Power Quality and Supply Reliability, Conference Proceedings ; 2012 , Pages 119-124 ; 9781467319775 (ISBN) Yasir, M ; Kazemi, S ; Lehtonen, M ; Fotuhi Firuzabad, M ; Sharif University of Technology
    2012
    Abstract
    Modern commercial operations consist of critical equipments that are more susceptible to voltage sag events. The consistent and smooth running of these operations is often disrupted by voltage sags. Diverse range of solutions exist which can enhance the ride through capability of sensitive devices. This paper presents various voltage dip mitigation solutions and a methodology for analyzing the effectiveness and practical viability of these solutions. The proposed approach is based on event tree method which gives an indication about the extent of process interruption in the event of voltage sags. A case study is conducted in the paper with different combinations of practical mitigation... 

    Analysis and Enhancement of Low Voltage Ride Through Of Wind Turbines with Brushless Doubly Fed Induction Generator

    , Ph.D. Dissertation Sharif University of Technology Gholizadeh, Mahyar (Author) ; Oraee Mirzamani, Hashem (Supervisor) ; Tohidi, Sajjad (Co-Advisor)
    Abstract
    Wind energy technologies guarantee low pollution and operational costs. Using a DFIG and a fractionally rated power electronics converter gives variable speed operation with a low cost drive train. As energy policy organizations have allocated a considerable quota of wind energy generation to offshore wind farms, the absence of slip rings and brushes in the brushless DFIG (BDFIG) is an advantage for offshore wind turbines where maintenance is vital and expensive. With increasing wind power penetration in power systems, grid code requirements are an important consideration for the ride-through capability of wind farms through voltage dips, particularly for multi- MW wind turbine generators.... 

    Analysis and Improvement of Dynamic Behavior of Brushless Doubly-Fed Induction Generator in Wind Turbines

    , M.Sc. Thesis Sharif University of Technology Tohidi, Sajjad (Author) ; Oraee Mirzamani, Hashem (Supervisor) ; Zolghadri, Mohammad Reza (Supervisor)
    Abstract
    Recently, the brushless doubly fed induction generator (BDFIG) has been proposed to be used in wind turbines due to variable speed operation with fractionally size power electronic converter and without brushes and slip rings. In this thesis, for the first time, LVRT capability of BDFIG has been assessed regarding the grid codes and several approaches have been suggested for improving it. Firstly, the steady-state performance of the BDFIG in different operating modes has been investigated and required tests have been performed. In addition, a new operating mode named as "double cascade mode" has been introduced. The fault-on performance of BDFIG has also been studied by means of torque-speed... 

    Analysis and enhancement of low-voltage ride-through capability of brushless doubly fed induction generator

    , Article IEEE Transactions on Industrial Electronics ; Volume 60, Issue 3 , March , 2013 , Pages 1146-1155 ; 02780046 (ISSN) Tohidi, S ; Oraee, H ; Zolghadri, M. R ; Shao, S ; Tavner, P ; Sharif University of Technology
    2013
    Abstract
    This paper discusses the dynamic behavior of the brushless doubly fed induction generator during the grid faults which lead to a decrease in the generator's terminal voltage. The variation of the fluxes, back EMFs, and currents are analyzed during and after the voltage dip. Furthermore, two alternative approaches are proposed to improve the generator ride-through capability using crowbar and series dynamic resistor circuits. Appropriate values for their resistances are calculated analytically. Finally, the coupled circuit model and the generator's speed and reactive power controllers are simulated to validate the theoretical results and the effectiveness of the proposed solutions. Moreover,... 

    A control scheme to enhance low voltage ride-through of brushless doubly-fed induction generators

    , Article Wind Energy ; November , 2015 ; 10954244 (ISSN) Tohidi, S ; Oraee, H ; Zolghadri, M. R ; Rahimi, M ; Sharif University of Technology
    John Wiley and Sons Ltd  2015
    Abstract
    The use of brushless doubly-fed induction generator has been recently proposed for wind turbines because of its variable speed operation with fractional size converter without the need to brush and slip ring. This paper introduces a control scheme to improve low voltage ride-through capability of doubly-fed induction generator considering grid code requirements. The proposed control strategy is based on analysis of flux linkages and back electromotive forces and intends to retain the control-winding current below the safety limit (typically 2pu) during severe voltage dips. The time-domain simulations validate effectiveness of the proposed scheme to protect the converter against failure as... 

    Efficient control scheme of wind turbines with doubly fed induction generators for low-voltage ride-through capability enhancement

    , Article IET Renewable Power Generation ; Volume 4, Issue 3 , May , 2010 , Pages 242-252 ; 17521416 (ISSN) Rahimi, M ; Parniani, M ; Sharif University of Technology
    2010
    Abstract
    As the penetration of wind power in electrical power systems increases, it is required that wind turbines remain connected to the grid and actively contribute to the system stability during and after grid faults. This study proposes an efficient control strategy to improve the low-voltage ride-through (LVRT) capability in doubly fed induction generators (DFIGs). The proposed scheme consists of passive and active LVRT compensators. The passive compensator is based on a new crowbar arrangement located in series with stator windings. It considerably reduces the rotor inrush current at the instants of occurring and clearing the fault. The active LVRT compensator is realised through rotor voltage... 

    A control scheme to enhance low voltage ride-through of brushless doubly-fed induction generators

    , Article Wind Energy ; Volume 19, Issue 9 , 2016 , Pages 1699-1712 ; 10954244 (ISSN) Tohidi, S ; Oraee, H ; Zolghadri, M. R ; Rahimi, M ; Sharif University of Technology
    John Wiley and Sons Ltd 
    Abstract
    The use of brushless doubly-fed induction generator has been recently proposed for wind turbines because of its variable speed operation with fractional size converter without the need to brush and slip ring. This paper introduces a control scheme to improve low voltage ride-through capability of doubly-fed induction generator considering grid code requirements. The proposed control strategy is based on analysis of flux linkages and back electromotive forces and intends to retain the control-winding current below the safety limit (typically 2 pu) during severe voltage dips. The time-domain simulations validate effectiveness of the proposed scheme to protect the converter against failure as... 

    Transient performance improvement of wind turbines with doubly fed induction generators using nonlinear control strategy

    , Article IEEE Transactions on Energy Conversion ; Volume 25, Issue 2 , 2010 , Pages 514-525 ; 08858969 (ISSN) Rahimi, M ; Parniani, M ; Sharif University of Technology
    2010
    Abstract
    This paper first discusses dynamic characteristics of wind turbines with doubly fed induction generator (DFIG). Rotor back electromotive force (EMF) voltages in DFIG reflect the effects of stator dynamics on rotor current dynamics, and have an important role on rotor inrush current during the generator voltage dip. Compensation of these voltages can improve DFIG ride-through capability and limit the rotor current transients. It is found that the electrical dynamics of the DFIG are in nonminimum phase for certain operating conditions. Also, it is shown that the dynamics of DFIG, under compensation of rotor back EMF and grid voltages, behave as a partially linearizable system containing... 

    Coordinated control approaches for low-voltage ride-through enhancement in wind turbines with doubly fed induction generators

    , Article IEEE Transactions on Energy Conversion ; Volume 25, Issue 3 , 2010 , Pages 873-883 ; 08858969 (ISSN) Rahimi, M ; Parniani, M ; Sharif University of Technology
    Abstract
    This paper deals with the coordinated control of rotor- and grid-side converters in wind turbines with doubly fed induction generators (DFIGs) to improve the low-voltage ride-through capability. The rotor-side converter control and additional equipment, called stator damping resistor, are used to limit the rotor inrush current and to reduce the oscillations and settling time of DFIG transient response during the voltage dip. Also, the grid-side converter is controlled to limit the dc-link overvoltage during the voltage drop. It is found that the dynamics of the grid-side converter and dc-link voltage exhibit nonminimum phase behavior, and thus there is an inherent limitation on the...