Loading...
Search for: wafer-bonding
0.012 seconds

    Dynamics of interface traps in bonded silicon wafers

    , Article Proceedings of SPIE - The International Society for Optical Engineering ; Volume 4580 , 2001 , Pages 391-398 ; 0277786X (ISSN) Khorasani, S ; Motieifar, A ; Rashidian, B ; Sharif University of Technology
    2001
    Abstract
    In this article, a time-domain non-linear model is proposed for quantum dynamics of interface traps. This model includes the effects of thermoionic emission, combined with the drift and tunneling currents. The model is simplified for the case of interface traps of the directly bonded Silicon wafers, and linearized. Therefore, an equivalent electrical circuit is obtained being composed of two resistive and capacitive branches. The theory predicts a close spacing between the corresponding zero and pole in the frequency response of the system, being justified by experiment on directly bonded n-type Silicon wafers. The low frequency response to a square-wave is quite in agreement with the... 

    Effect of annealing-induced tensions on the mechanical failure of copper/copper interface in wafer-to-wafer hybrid bonding

    , Article ECS Journal of Solid State Science and Technology ; Volume 10, Issue 2 , 2021 ; 21628769 (ISSN) Ghaemi, M ; Jafary Zadeh, M ; Sharif University of Technology
    IOP Publishing Ltd  2021
    Abstract
    The copper/copper (Cu/Cu) interface has an important role in wafer-to-wafer hybrid bonding for 3D integration applications. Reports indicate the possibility of the formation of post-bonding interfacial voids and cracks which must be avoided. Here, we use molecular dynamics simulations to investigate the effect of annealing-induced tensions on the strength and deformation mechanisms of Cu/Cu interfaces. We perform tensile tests on the pristine and defective Cu/Cu interfaces including a prototypical interfacial grain boundary in two defective limits: the presence of a single (isolated) void, and an array of multiple voids. The latter resembles interfacial nanoscale roughness as a result of...