Loading...
Search for: water-based-drilling-fluid
0.005 seconds

    Influence of monoethanolamine on thermal stability of starch in water based drilling fluid system

    , Article Shiyou Kantan Yu Kaifa/Petroleum Exploration and Development ; Volume 45, Issue 1 , 2018 , Pages 157-160 ; 10000747 (ISSN) Nasiri, A ; Sharif Nik, M. A ; Heidari, H ; Valizadeh, M ; Sharif University of Technology
    Science Press  2018
    Abstract
    To improve the thermal stability of starch in water-based drilling fluid, monoethanolamine (MEA) was added, and the effect was investigated by laboratory experiment. The experimental results show that the addition of monoethanolamine (MEA) increases the apparent viscosity, plastic viscosity, dynamic shear force, and static shear force of the drilling fluid, and reduces the filtration rate of drilling fluid and thickness of mud cake apparently. By creating hydrogen bonds with starch polymer, the monoethanolamine can prevent hydrolysis of starch at high temperature. Starch, as a natural polymer, is able to improve the rheological properties and reduce filtration of drilling fluid, but it works... 

    Influence of monoethanolamine on thermal stability of starch in water based drilling fluid system

    , Article Petroleum Exploration and Development ; Volume 45, Issue 1 , February , 2018 , Pages 167-171 ; 18763804 (ISSN) Sharif Nik, M. A ; Ameri Shahrabi, M. J ; Heidari, H ; Valizadeh, M ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    To improve the thermal stability of starch in water-based drilling fluid, monoethanolamine (MEA) was added, and the effect was investigated by laboratory experiment. The experimental results show that the addition of monoethanolamine (MEA) increases the apparent viscosity, plastic viscosity, dynamic shear force, and static shear force of the drilling fluid, and reduces the filtration rate of drilling fluid and thickness of mud cake apparently. By creating hydrogen bonds with starch polymer, the monoethanolamine can prevent hydrolysis of starch at high temperature. Starch, as a natural polymer, is able to improve the rheological properties and reduce filtration of drilling fluid, but it works... 

    Design and Characterization of Silica based Mud for Shale Drilling

    , M.Sc. Thesis Sharif University of Technology Farohi, Mohammad Reza (Author) ; Ramezani Saadat Abadi, Ahmad (Supervisor) ; Jamshidi, Saeed (Supervisor)
    Abstract
    Constant drilling in the shale formation causes many problems such as shale swelling and well instability. Annually many costs are spent dealing with these problems in the drilling industry. Many factors can affect this issue. The most important factor is the type of drilling fluid and its additives. The use of oil-based mud is the best option to deal with the clays instability but, due to environmental problems resulting from OBM, their use has been banned in most parts of the world. Therefore, the water-based mud is the only option for the oil industry that can modify its property by use of additives. In this study, the muds contain Nano silica have been introduced. Silicate as shale... 

    Modeling and Laboratory Evaluation of Rheological Properties of Water based Mud for Horizontal Extended Reach Well

    , M.Sc. Thesis Sharif University of Technology Latifi Shirdar, Babak (Author) ; Taghikhani, Vahid (Supervisor) ; Ghazanfari, Mohammad Hossein (Supervisor) ; Tahmasbi Nowtarki, Koroush (Co-Supervisor) ; Kalhor, Mojtaba (Co-Supervisor)
    Abstract
    One of the most important challenges in drilling horizontal and directional wells is the optimization of hydraulics and hole cleaning and ECD management. In these wells, poor hole cleaning can lead to formation of cutting bed on the low side of the annulus and cause problems such as stuck pipe or increase in torque and drag. Also poor hydraulic design can lead to decrease in rate of penetration and thus, increase in costs. Mud weight should be placed inside the range of mud window (more than pore pressure and less than formation fracture pressure) in order to prevent kick of reservoir fluid or mud loss.In this thesis, the main goal is to optimize hydraulics and hole cleaning and manage ECD... 

    Pore-Scale Investigation of the Effect of Fracture and Mineralogy on Formation Damage Caused by Drilling Fluid

    , M.Sc. Thesis Sharif University of Technology Nikbin, Hadi (Author) ; Mahani, Hassan (Supervisor) ; Masihi, Mohsen (Supervisor)
    Abstract
    Formation damage in petroleum engineering is an important and fundamental phenomenon. During drilling operation, penetration of either the solid phase of drilling fluid or the base-fluid into the porous medium, reduces the permeability of the formation. While most experiments in the literature have focused on core-scale and beyond, there is lack of pore-scale studies. Moreover, presence of fractures has an undeniable effect on the extent of formation damage. Thus, the main objective of this dissertation is to investigate the effects of fractures on the severity of formation damage caused by the water-based drilling fluid and the mechanisms of formation damage at the pore scale, using glass... 

    Experimental Investigation of the Hole Cleaning Process in Horizontal and Inclined Wells Using a Custom-Made Water-Based Drilling Fluid

    , M.Sc. Thesis Sharif University of Technology Mohammadi Asfad, Mohammad (Author) ; Taghi khani, Vahid (Supervisor) ; Tahmasebi, Korosh (Co-Supervisor) ; Kalhor, Mogtaba (Co-Supervisor)
    Abstract
    Currently, drilling such as vertical or straight-hole drilling, i.e. usually less than 30 degrees inclined, or deflection drilling is used to drill at conventional and even unconventional reservoirs around the world to increase recovery factor and productivity. A major challenge is cleaning the hole or removing debris which if not done properly can lead to problems such as stuck pipes. In addition, Improper use of drilling fluid in terms of rheological properties in different stages of drilling operations can cause the well to collapse due to the accumulation of particles in the annular space. The transfer speed of particles is very important in cleaning the well. Inefficient cleaning of... 

    Investigating the rheological properties of nanofluids of water/hybrid nanostructure of spherical silica/MWCNT

    , Article Thermochimica Acta ; Volume 578 , 20 February , 2014 , Pages 53-58 ; ISSN: 00406031 Baghbanzadeh, M ; Rashidi, A ; Soleimanisalim, A. H ; Rashtchian, D ; Sharif University of Technology
    Abstract
    Regarding the importance of rheological properties of water based drilling fluids, the effects of silica nanospheres, multiwall carbon nanotubes (MWCNTs) and two types of their hybrid, i.e. H1 (80 wt.% silica nanosphere/20 wt.% MWCNT) and H2 (50 wt.% silica nanosphere/50 wt.% MWCNT) on the viscosity and density of distilled water were investigated. According to the results, viscosity and density of the nanofluids increased with the concentration, while they were reduced by increasing the temperature. At high concentrations, the least increase in the viscosity of distilled water by adding the nanomaterials is related to H2 (8.2% increase at 1.0 wt.%). Likewise, the optimum operating... 

    Designing Drilling Mud Using Environmental Resistant Polymers and Investigation of Rheological Properties and Stability to Achieve Optimal Formulation

    , M.Sc. Thesis Sharif University of Technology Soleimanian, Alireza (Author) ; Ramezani, Ahmad (Supervisor) ; Goodarznia, Iraj (Supervisor)
    Abstract
    The purpose of this project is to design a water-based drilling fluid for use in high-pressure and high-pressure conditions (Deep Drilling). This goal is usually achieved by adding the resistant polymers to the ambient conditions (temperature stability) to the drilling fluid (here the blue base fluid), and then the rheological properties of the fluid are studied. The stability of the rheological properties of the fluid in high temperature and high pressure conditions is not constant. In this situation, a sequence of events occurs, for example, decreases with increasing viscosity and turbulence, and hence the reduction of drilling fractures and the efficiency of the bottom of the well is... 

    Experimental investigation of self-repeating effect of different nanoparticles on internal mud cake formation by water-based drilling fluid in directional wells

    , Article Drilling Technology Conference 2016, 22 August 2016 through 24 August 2016 ; 2016 ; 9781613994504 (ISBN) Sedaghatzadeh, M ; Shahbazi, K ; Ghazanfari, M. H ; Zargar, G ; Sharif University of Technology
    Society of Petroleum Engineers 
    Abstract
    In this paper, the impact of three parameters including nanoparticles geometry, particles aggregation and borehole inclination on induced formation damage from water based drilling fluids were investigated by means of experimental studies. Accordingly, we designed a dynamic filtration setup capable to rotate and change well inclination. Nano-based drilling fluids consisting of spherical, cubical and tubular shapes nanoparticles as fluid loss additives were used. Mud cake quality, core permeability impairment and degree of formation damage at various well inclinations were examined. The cluster structure of aggregated particles were determined using fractal theory and applying dynamic light... 

    The impact of nanoparticles geometry and particle size on formation damage induced by drilling nano-fluid during dynamic filtration

    , Article Journal of Nano Research ; Volume 43 , 2016 , Pages 81-97 ; 16625250 (ISSN) Sedaghatzadeh, M ; Shahbazi, Kh ; Ghazanfari, M. H ; Zargar, Gh ; Sharif University of Technology
    Trans Tech Publications Ltd  2016
    Abstract
    In this paper, the impact of three parameters including nanoparticles geometry, particles aggregation and borehole inclination on induced formation damage from water based drilling fluids were investigated by means of experimental studies. Accordingly, we designed a dynamic filtration setup capable to rotate and change well inclination. Nano-based drilling fluids consisting of spherical, cubical and tubular shapes nanoparticles as fluid loss additives were used. Mud cake quality, core permeability impairment and degree of formation damage at various well inclinations were examined. The cluster structure of aggregated particles were determined using fractal theory and applying dynamic light... 

    Wettability alteration of carbonate rock by nonionic surfactants in water-based drilling fluid

    , Article International Journal of Environmental Science and Technology ; 2018 ; 17351472 (ISSN) Kiani, M ; Ramazani SaadatAbadi, A ; Jafari Behbahani, T ; Sharif University of Technology
    Center for Environmental and Energy Research and Studies  2018
    Abstract
    The influx of solid or liquid particles of drilling mud into the pores of rock or mud loss phenomenon and clay swelling can sometimes lead to severe productive formation damage and cause to wettability alterations of reservoir rock from hydrophilic to oleophilic. Therefore, designing an appropriate fluid that is compatible with formation fluids and could reduce reservoir damage and increase the productivity of wells is very important. The two main mechanisms of surfactants are reduction of the surface tension and wettability alteration of rock reservoir that are effective in taking the oil. Regarding the importance of the wettability in reservoir productivity, this article is aimed to study... 

    Rheological modeling of water based drilling fluids containing polymer/bentonite using generalized bracket formalism

    , Article Journal of Petroleum Science and Engineering ; Volume 189 , 2020 Kariman Moghaddam, A ; Ramazani Saadatabadi, A ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Drilling fluids consist of several components with different physical and structural form which can be assumed as complex fluids. Optimum performance of drilling process could be obtained through the dynamic fluid computation which requires a reliable mathematical model capable to predict transient and steady state rheological behavior of drilling fluid. Generalized Newtonian formulations are the most popular models for drilling fluids due to their simplicity in spite of their inabilities to predict transient and elastic behavior of such fluids. In this paper, we have developed a mathematical model to predict transient and steady state rheological behavior of the complex fluids on the scale... 

    Insights into the pore-scale mechanisms of formation damage induced by drilling fluid and its control by silica nanoparticles

    , Article Energy and Fuels ; Volume 34, Issue 6 , 20 May , 2020 , Pages 6904-6919 Mohammadi, M ; Mahani, H ; Sharif University of Technology
    American Chemical Society  2020
    Abstract
    The formation damage (FD) caused by the invasion of drilling fluid severely affects reservoir performance during production. Most of the published research studies which address this type of FD have been carried out at the core or field scale. Thus, the main aim of the paper is to investigate the pore-scale mechanisms of FD induced by drilling fluids and their control with silica nanoparticles (NPs) using a microfluidic approach. The proper identification of the mechanisms of FD can lead to the proper selection of NP type and concentration as well as a suitable method to remediate FD. The micromodel was designed in a way to closely simulate the cross-flow at the wellbore surface. A... 

    New insight into the filtration control of drilling fluids using a graphene-based nanocomposite under static and dynamic conditions

    , Article ACS Sustainable Chemistry and Engineering ; Volume 9, Issue 38 , 2021 , Pages 12844-12857 ; 21680485 (ISSN) Movahedi, H ; Jamshidi, S ; Hajipour, M ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    During oil and gas well drilling, the filtration control of bentonite water-based drilling fluids (BT-WBDFs), as an environmentally friendly fluid, is crucial to avoid formation damage and swelling shale problems. One of the most critical problems is undesirable changes in the rheology and filtration properties of the BT-WBDFs because of salt contamination. Herein, the potential of using both graphene oxide (GO) nanosheets and a graphene oxide-polyacrylamide (GO-PAM) nanocomposite is evaluated for controlling the filtration properties, especially in a salty medium. First, GO nanosheets were functionalized, and then the GO-PAM nanocomposite was synthesized using the solution polymerization... 

    Wettability alteration of carbonate rock by nonionic surfactants in water-based drilling fluid

    , Article International Journal of Environmental Science and Technology ; Volume 16, Issue 11 , 2019 , Pages 6547-6556 ; 17351472 (ISSN) Kiani, M ; Ramazani SaadatAbadi, A ; Jafari Behbahani, T ; Sharif University of Technology
    Center for Environmental and Energy Research and Studies  2019
    Abstract
    The influx of solid or liquid particles of drilling mud into the pores of rock or mud loss phenomenon and clay swelling can sometimes lead to severe productive formation damage and cause to wettability alterations of reservoir rock from hydrophilic to oleophilic. Therefore, designing an appropriate fluid that is compatible with formation fluids and could reduce reservoir damage and increase the productivity of wells is very important. The two main mechanisms of surfactants are reduction of the surface tension and wettability alteration of rock reservoir that are effective in taking the oil. Regarding the importance of the wettability in reservoir productivity, this article is aimed to study...