Loading...
Search for: water-contact-angle-measurement
0.015 seconds

    Vertically aligned ZnO@CdS nanorod heterostructures for visible light photoinactivation of bacteria

    , Article Journal of Alloys and Compounds ; Vol. 590 , 2014 , pp. 507-513 ; ISSN: 09258388 Zirak, M ; Akhavan, O ; Moradlou, O ; Nien, Y. T ; Moshfegh, A. Z ; Sharif University of Technology
    Abstract
    Vertically aligned ZnO@CdS nanorod heterostructure films with various loadings of CdS nanoparticle shell were synthesized and applied in photoinactivation of Escherichia coli bacteria under visible light irradiation. While neither the bare ZnO nanorods (with band-gap energy (Eg) of ∼3.28 eV) under visible light irradiation nor the nanorod heterostructures in dark exhibited any significant antibacterial activity, the ZnO@CdS nanorod heterostructures (with Eg ∼2.5-2.6 eV) could successfully inactivate the bacteria under visible light irradiation. Furthermore, it was found that an optimum loading of the CdS shell (corresponding to the effective thickness less than ∼15 nm) is required to achieve... 

    Development of a novel graphene oxide-blended polysulfone mixed matrix membrane with improved hydrophilicity and evaluation of nitrate removal from aqueous solutions

    , Article Chemical Engineering Communications ; 2018 ; 00986445 (ISSN) Rezaee, R ; Nasseri, S ; Mahvi, A. H ; Nabizadeh, R ; Mousavi, S. A ; Maleki, A ; Alimohammadi, M ; Jafari, A ; Hemmati Borji, S ; Sharif University of Technology
    Taylor and Francis Ltd  2018
    Abstract
    In this study, four types of mixed matrix membranes were fabricated using polysulfone (as the base polymer) and different contents of graphene oxide (GO) nanosheets (as modifier) through wet phase inversion method. Based on the amounts of GO (0, 0.5, 1, and 2 wt%), the synthesized membranes named as M1, M2, M3, and M4, respectively. The membranes characteristics were evaluated using FE-SEM, FT-IR, and water contact angle measurements. In addition, the performance of the prepared membranes was investigated in terms of basic parameters: filtrate water flux, nitrate removal efficiency, and antifouling properties. Results showed significant improvements of the characteristics of modified... 

    Development of a novel graphene oxide-blended polysulfone mixed matrix membrane with improved hydrophilicity and evaluation of nitrate removal from aqueous solutions

    , Article Chemical Engineering Communications ; Volume 206, Issue 4 , 2019 , Pages 495-508 ; 00986445 (ISSN) Rezaee, R ; Nasseri, S ; Mahvi, A. H ; Nabizadeh, R ; Mousavi, S. A ; Maleki, A ; Alimohammadi, M ; Jafari, A ; Hemmati Borji, S ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    In this study, four types of mixed matrix membranes were fabricated using polysulfone (as the base polymer) and different contents of graphene oxide (GO) nanosheets (as modifier) through wet phase inversion method. Based on the amounts of GO (0, 0.5, 1, and 2 wt%), the synthesized membranes named as M1, M2, M3, and M4, respectively. The membranes characteristics were evaluated using FE-SEM, FT-IR, and water contact angle measurements. In addition, the performance of the prepared membranes was investigated in terms of basic parameters: filtrate water flux, nitrate removal efficiency, and antifouling properties. Results showed significant improvements of the characteristics of modified... 

    Conductive multichannel PCL/gelatin conduit with tunable mechanical and structural properties for peripheral nerve regeneration

    , Article Journal of Applied Polymer Science ; Volume 137, Issue 40 , 20 October , 2020 Mohammadi, M ; Ramazani Saadat Abadi, A ; Mashayekhan, S ; Sanaei, R ; Sharif University of Technology
    John Wiley and Sons Inc  2020
    Abstract
    Peripheral nerve injuries remain among the most challenging medical issues despite numerous efforts to devise methods in fabrication of nerve conduits to functionally regenerate axonal defects. In this regard, the current study offers a holistic perspective in design by considering the mechanical, topographical and structural aspects which are crucial for a successful nerve guide conduit. Poly(e-caprolactone) and gelatin were employed to serve this purpose in the form of dual-electrospun films which were rolled and later shaped the assembly of a multichannel conduit. Polyaniline/graphene (PAG) nanocomposite was incorporated to endow the conduit with conductive properties. FTIR analysis,... 

    Synthesis and characterization of co-doped TiO2 thin films on glass-ceramic

    , Article Materials Science in Semiconductor Processing ; Vol. 26, Issue 1 , October , 2014 , pp. 41-48 ; ISSN: 13698001 Ahmadi, N ; Nemati, A ; Solati-Hashjin, M ; Sharif University of Technology
    Abstract
    In this research, an attempt was made to improve TiO2 photo-catalyst properties, thus pure, N-Ce co-doped TiO2 thin films were prepared on glass-ceramic substrate using a sol-gel dip-coating technique. The samples were calcinated in air at 475 °C, 550°C, and 650°C for 2 h. The result of simultaneous thermal analysis (STA) and X-ray diffraction (XRD) showed that the presence of Ce in TiO2 could inhibit the phase transformation from anatase to rutile and enhance the thermal stability, and anatase was the dominant phase in N-Ce co-doped TiO2 samples. Also based on the results, the doping results in decreasing the size of TiO 2 crystallite. The results of ultra violet-visible light diffuse... 

    Correlation between surface roughness and hydrophobicity of GLAD RF sputtered PTFE/W/Glass nanorod thin films

    , Article Vacuum ; Vol. 101, issue , March , 2014 , p. 279-282 Bayat, A ; Ebrahimi, M ; Moshfegh, A. Z ; Sharif University of Technology
    Abstract
    In this research, we have used glancing angle deposition (GLAD) RF sputtering technique with various angular speeds ranging from 5 to 30 RPM to fabricate polytetrafluoroethylene (PTFE, Teflon) coated Tungsten on glass substrate for producing hydrophobic surface. According to scanning electron microscopy (SEM) observations, Tungsten nanorods were formed on the substrate with average diameter and length of about ∼50 nm and 300 nm, respectively. Hydrophobic property of W/Glass and PTFE/W/Glass systems was investigated by water contact angle measurements and we have found that the contact angle varied with the substrate angular speed. Maximum contact angle of 121 was measured for the... 

    Photoactive and self-cleaning TiO 2-SiO 2 thin films on 316L stainless steel

    , Article Thin Solid Films ; Volume 520, Issue 20 , 2012 , Pages 6355-6360 ; 00406090 (ISSN) Boroujeny, B. S ; Afshar, A ; Dolati, A ; Sharif University of Technology
    Abstract
    In this study, TiO 2-SiO 2 nanocomposite films with different amounts of SiO 2 were prepared by sol-gel process and were coated onto stainless steel 316L. The effect of addition of various amount of SiO 2 in the precursor solution on the photocatalysis, photo-generated hydrophilicity and self-cleaning property of TiO 2 thin films was investigated by X-ray diffraction, Fourier transform infrared spectroscopy, water contact angle measurements and UV spectroscopy. In the tested ranges of SiO 2 content and sintering temperature, the highest photocatalytic activity and self-cleaning property were observed in the 15 mol% SiO 2 sample sintered at 750 °C. Addition of less than 30 mol% SiO 2 had a... 

    Effect of low-frequency oxygen plasma on polysulfone membranes for CO 2/CH 4 Separation

    , Article Journal of Applied Polymer Science ; Volume 124, Issue SUPPL. 1 , 2012 , Pages E199-E204 ; 00218995 (ISSN) Modarresi, S ; Soltanieh, M ; Mousavi, S. A ; Shabani, I ; Sharif University of Technology
    2012
    Abstract
    Low-frequency O 2 plasma was used to modify the surface of polysulfone gas-separation membranes. The effects of the treatment time and plasma power input on the membranes were also investigated. Pure CO 2 and CH 4 gas-permeation measurements were performed before and after plasma treatment. The results show the increase of permeability of the treated membranes due to surface ablation and surface polarization up to 5.63 and 68.80 gas-permeation units for CH 4 and CO 2, respectively, whereas, the CO 2/CH 4 selectivity of the treated membranes varied from 7.7 to 45.3, depending on the treatment conditions. Attenuated total reflection-Fourier transform infrared spectroscopy determined the... 

    Plasma surface functionalization of boron nitride nano-sheets

    , Article Diamond and Related Materials ; Volume 77 , 2017 , Pages 110-115 ; 09259635 (ISSN) Achour, H ; Achour, A ; Solaymani, S ; Islam, M ; Vizireanu, S ; Arman, A ; Ahmadpourian, A ; Dinescu, G ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    On silicon substrates, boron nitride nanosheets (BNNS) consisting of interconnected hexagonal boron nitride nano-layers were produced via chemical vapor deposition process at 1200 °C whose roughness's are at the micrometer- and nanometer-scale. The BNNS were functionalized in argon plasma admixed with ammonia or nitrogen or oxygen. The samples were characterized to investigate the surface chemistry and structural changes after plasma treatment using X-ray photoelectron spectroscope and Micro-Raman spectroscope techniques, respectively. While no significant changes in the surface features, upon plasma treatments of the BNNS, were noticed during SEM and TEM examination, the oxygen functional... 

    Facile fabrication of superhydrophobic nanocomposite coating using modified silica nanoparticles and non-fluorinated acrylic copolymer

    , Article Polymer Bulletin ; Volume 75, Issue 10 , 2018 , Pages 4641-4655 ; 01700839 (ISSN) Pourjavadi, A ; Esmaili, H ; Nazari, M ; Sharif University of Technology
    Abstract
    A superhydrophobic nanocomposite coating was fabricated using a simple procedure. The nanocomposite is composed of an acrylic copolymer and modified silica nanoparticles. The acrylic copolymer was prepared by free radical copolymerization of methyl methacrylate and dodeycl methacrylate monomers. Silica nanoparticles were synthesized and modified with an alkyl silane reagent, hexadecyltrimethoxysilane. A mixture of acrylic copolymer and modified silica nanoparticles, dispersed in dichloromethane, was then sprayed on glass and filter paper surface. Chemical composition and structure of the coatings were investigated by FTIR, FESEM, AFM, 1H-NMR and GPC. The wettability of the prepared coating... 

    Metal organic framework nanoparticles loaded- PVDF/chitosan nanofibrous ultrafiltration membranes for the removal of BSA protein and Cr(VI) ions

    , Article Journal of Molecular Liquids ; Volume 317 , 2020 Pishnamazi, M ; Koushkbaghi, S ; Hosseini, S. S ; Darabi, M ; Yousefi, A ; Irani, M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    The UiO-66 NH2 and ZIF-8 metal organic framework nanoparticles (NMOFs) were incorporated into the polyvinylidene fluoride (PVDF) nanofibrous membrane. Then, the chitosan nanofibers were coated on the PVDF nanofibers to produce the PVDF/chitosan nanofibers. The performance of synthesized PVDF/NMOFs single layer and PVDF/chitosan/NMOFs two layers nanofibrous membranes was investigated for BSA protein molecules and Cr(VI) ions separation via ultrafiltration membrane process. The potential of synthesized nanofibers was also examined for BSA and Cr(VI) adsorption in a batch system. The characteristics of synthesized nanofibrous membranes were determined using SEM, EDX, TGA, BET, porosity and... 

    Biodegradation behavior of polymethyl methacrylate−bioactive glass 45S5 composite coated magnesium in simulated body fluid

    , Article Transactions of Nonferrous Metals Society of China (English Edition) ; Volume 32, Issue 7 , 2022 , Pages 2216-2228 ; 10036326 (ISSN) ROUEIN, Z ; Jafari, H ; Pishbin, F ; Mohammadi, R ; Simchi, A ; Sharif University of Technology
    Nonferrous Metals Society of China  2022
    Abstract
    The biodegradation behavior of Mg, coated by polymethyl methacrylate as well as polymethyl methacrylate (PMMA)−bioactive glass (BG) composite was investigated. Electrophoretic deposition and dip coating techniques were adopted to prepare composite coating using a suspension of different percentages of the above two chemical materials. The deposited coatings were characterized using SEM, EDS, FTIR, and water contact angle measurements. Biodegradation behavior study of the coated Mg was performed using linear polarization, impedance spectroscopy, and immersion tests in simulated body fluid. The compact and homogeneous composite coating was developed as evidenced by electron microscopy results....