Loading...
Search for: water-flows
0.006 seconds
Total 36 records

    Effect of geometry and foundation conditions on the accuracy of the steady state seepage analysis results for rockfill dams

    , Article Scientia Iranica ; Volume 14, Issue 3 , 2007 , Pages 212-220 ; 10263098 (ISSN) Jafarzadeh, F ; Soleimanbeigi, A ; Sharif University of Technology
    Sharif University of Technology  2007
    Abstract
    One of the most important concerns in designing an embankment dam is seepage analysis. Conventional seepage analyses of embankment dams are performed in two-dimensional (2D) space, in which the impacts of water flow lines seeping from the side abutments are ignored. This fact is especially important if the dam is constructed in a narrow valley. In addition, if the effects of existing underlain faults in the reservoir water discharge rate, under different loading conditions, are to be scrutinized, three-dimensional (3D) modeling of the dam for seepage analysis is inevitable. In this paper, the significance of three-dimensional seepage analyses is emphasized by making a 3D model of a real dam... 

    Development of a device for measuring air–water flow characteristics

    , Article International Journal of Civil Engineering ; Volume 15, Issue 2 , 2017 , Pages 195-203 ; 17350522 (ISSN) Fazel, Z ; Fazelian, M ; Sarkardeh, H ; Sharif University of Technology
    Springer International Publishing  2017
    Abstract
    Air–water flow is a complex and challenging subject in many engineering fields as well as hydraulic engineering; and discovery of its characteristics can help the engineers to predict and analyze a probable phenomenon. In the present paper, development of a device capable of measuring the flow velocity, air concentration, diameter and counts of bubbles in air–water flows is described. The heart of the present device is two resistive probes with a novel configuration. Being pressure and corrosion resistant and also having negligible resistivity in the flow are some of the unique features of the employed needles. Moreover, sampling frequency and time can be adjusted for the intended... 

    Experimental investigation of air-water, two-phase flow regimes in vertical mini pipe

    , Article Scientia Iranica ; Volume 18, Issue 4 B , August , 2011 , Pages 923-929 ; 10263098 (ISSN) Hanafizadeh, P ; Saidi, M. H ; Nouri Gheimasi, A ; Ghanbarzadeh, S ; Sharif University of Technology
    2011
    Abstract
    In this study, the flow patterns of air-water, two-phase flows have been investigated experimentally in a vertical mini pipe. The flow regimes were observed by a high speed video recorder in pipes with diameters of 2,3 and 4 mm and length 27, 31 and 25 cm, respectively. The comprehensive visualization of air-water, two-phase flow in a vertical mini pipe has been performed to realize the physics of such a two-phase flow. Different flow patterns of air-water flow were observed simultaneously in the mini pipe at different values of air and water flow rates. Consequently, the flow pattern map was proposed for flow in the mini-pipe, in terms of superficial velocities of liquid and gas phases. The... 

    Simulation of 2-D dam break using improved incompressible smoothed particle hydrodynamics based on projection method

    , Article Applied Mechanics and Materials ; Volume 390 , 2013 , Pages 81-85 ; 16609336 (ISSN) ; 9783037858332 (ISBN) Pourabdian, M ; Qate, M ; Javareshkian, A ; Farzbod, A ; Sharif University of Technology
    2013
    Abstract
    This paper deals with numerical modeling of water flow which is generated by the break of a dam. The problem is solved by applying a new Incompressible Smoothed Particle Hydrodynamics (ISPH) algorithm based on projection method. The proposed ISPH model has two steps. In the first step, the incompressibility of fluid is maintained regarding to the changes of intermediate and initial particles densities at the first half-time step (stability step). In the second step, by computing the divergence of the intermediate secondary velocity at the second half-time step (accuracy step), the incompressibility is satisfied completely. In fact, by using this method both stability and accuracy are... 

    A conservative extension of the method of characteristics for 1-D shallow flows

    , Article Applied Mathematical Modelling ; Volume 31, Issue 2 , 2007 , Pages 332-348 ; 0307904X (ISSN) Mohammadian, A ; Le Roux, D. Y ; Tajrishi, M ; Sharif University of Technology
    2007
    Abstract
    The method of characteristics (MOC) has been used for a long time in open channels and pipes flows. It is based on non-conservative equations, and hence it cannot be used directly for solving discontinuous shallow flows. In this paper we develop a conservative version of the MOC scheme for 1-D shallow flows by imposing the conservation law at the interpolation step. The conservation property of the scheme ensures the production of an accurate shock modeling and enables the MOC scheme to simulate dam-break type flows. By using a proper interpolation function, the proposed method can also produce quite accurate low-oscillatory results. A number of challenging test cases show considerable... 

    An analytical model to simulate the automotive cooling system

    , Article 2005 ASME Summer Heat Transfer Conference, HT 2005, San Francisco, CA, 17 July 2005 through 22 July 2005 ; Volume 4 , 2005 , Pages 439-451 ; 0791847314 (ISBN); 9780791847312 (ISBN) Samadiani, E ; Kakaee, A ; Sharif University of Technology
    2005
    Abstract
    In this paper the effect of simultaneous operation of the automotive radiator, fan, engine, and cooler system on radiator coolant inlet temperature is studied. For this purpose, an analytical model is developed to simulate the automotive cooling system. First, the heat transfer rate and air pressure drop in radiators with louvered corrugated fins and flat tubes are modeled and compared with wind tunnel test results over six radiator cores. Also, the air flow path is simulated. Two preexisting codes are used to simulate the automotive engine and cooler system. Then a code is developed in order to investigate the effect of different parameters related to each component of the cooling system on... 

    Forecasting models for flow and total dissolved solids in Karoun river-Iran

    , Article Journal of Hydrology ; Volume 535 , 2016 , Pages 148-159 ; 00221694 (ISSN) Salmani, M. H ; Salmani Jajaei, E ; Sharif University of Technology
    Abstract
    Water quality is one of the most important factors contributing to a healthy life. From the water quality management point of view, TDS (total dissolved solids) is the most important factor and many water developing plans have been implemented in recognition of this factor. However, these plans have not been perfect and very successful in overcoming the poor water quality problem, so there are a good volume of related studies in the literature. We study TDS and the water flow of the Karoun river in southwest Iran. We collected the necessary time series data from the Harmaleh station located in the river. We present two Univariate Seasonal Autoregressive Integrated Movement Average (ARIMA)... 

    Modeling Lakebed Hydrogeological Properties Effects on Lake and Groundwater Interaction (Case Study: Lake Urmia)

    , M.Sc. Thesis Sharif University of Technology Sheibani, Sorour (Author) ; Ataie Ashtiani, Behzad (Supervisor)
    Abstract
    Lake Urmia water level fell dramatically from 2006 to 2014. Since then the declining trend of water level has stopped but the lake has remained in a critical situation. Moreover, Lake Urmia became supersaturated with total salinity averaging more than 350 g/l. Salt precipitation and dissolved materials brought by inflowing rivers have formed a layer of sediment with low hydraulic conductivity on the lakebed. We conducted a series of numerical simulation scenarios to study the groundwater flow pattern in the vicinity of the hypersaline Lake Urmia using COMSOL Multiphysics®. In the first step, we performed the simulations in steady-state conditions. Secondly, we simulated the lake level fall... 

    The effect of chemical functional groups and salt concentration on performance of single-layer graphene membrane in water desalination process: A molecular dynamics simulation study

    , Article Journal of Molecular Liquids ; Volume 301 , 2020 Chogani, A ; Moosavi, A ; Bagheri Sarvestani, A ; Shariat, M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In this study, the mechanisms of passing water and salt ions through nanoporous single-layer graphene membrane are simulated using classical molecular dynamics. The effects of functional groups placed in nanopores and feed water's salt concentration on water desalination are investigated. In order to understand the role of functional groups in desalination process, Methyl, Ethyl and a combination of Fluorine and Hydrogen molecules are distributed around the nanopores. In all cases, different number of functional molecules is employed in order to find an optimum distribution of the groups at hand. The results show that an appropriate distribution of Alkyl groups can properly stop the salt... 

    Experimental results of pressure variation in two-phase air-water flow in water tunnels

    , Article 31st IAHR Congress 2005: Water Engineering for the Future, Choices and Challenges, 11 September 2005 through 16 September 2005 ; 2005 , Pages 6523-6533 ; 8987898245 (ISBN); 9788987898247 (ISBN) Kabiri Samani, A ; Byong-Ho J ; Sang I. L ; Won S. I ; Gye-Woon C ; Sharif University of Technology
    Korea Water Resources Association  2005
    Abstract
    An experimental investigation has been carried out to verify characteristics of pressure fluctuations inside a circular, horizontal and inclined pipeline (90mm inside diameter and 10 m long) carrying two-phase air-water flow in a controlled manner (operating at room temperature and normal pressure). The pressure fluctuation was considered to be due to interaction between the fluid and air bubble compressibility in the pipe. The fluctuating pressure was studied in detail while the flow pattern was mainly slug, wavy or stratified flow. The tests were carried out varying with time, space, water flow rate/air flow rate ratio and pipe inclination. The pressure fluctuations were measured... 

    Investigation of the influence of permeability coefficient on the numerical modeling of the liquefaction phenomenon

    , Article Scientia Iranica ; Volume 19, Issue 2 , 2012 , Pages 179-187 ; 10263098 (ISSN) Rahmani, A ; Ghasemi Fare, O ; Pak, A ; Sharif University of Technology
    2012
    Abstract
    The soil permeability coefficient plays a key role in the process of numerical simulation of the liquefaction phenomenon. Liquefaction causes a considerable increase in soil permeability, due to the creation of easier paths for water flow. The work presented in this paper tries to investigate the effects of permeability coefficient on the results of numerical modeling of the liquefaction phenomenon. To do this, a fully coupled (u-P) formulation is employed to analyze soil displacements and pore water pressures. Two different versions of a well-calibrated critical state bounding surface plasticity model, which possesses the capability to utilize a single set of material parameters for a wide... 

    A new approach to counter-current spontaneous imbibition simulation using Green element method

    , Article Journal of Petroleum Science and Engineering ; Vol. 119, issue , 2014 , p. 163-168 Bagherinezhad, A ; Pishvaie, M. R ; Sharif University of Technology
    Abstract
    This paper develops a two dimensional Green element simulator based on a "compatibility-equation" algorithm for simulation of counter-current spontaneous imbibition (COUCSI) process. The Green element method is a novel computational approach based on the boundary integral theory, which is regarded as a hybrid combination of both boundary and finite element methods. The superiority of the Green element method in modeling of two phase water/oil flow is at the core of this paper. The developed simulator within the context of this proposition is explored to predict the oil recovery from a one dimensional single matrix block. The results are then compared with the experimental data, and they... 

    Fuzzy clustering of vertical two phase flow regimes based on image processing technique

    , Article American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM, 1 August 2010 through 5 August 2010, Montreal, QC ; Volume 2 , 2010 , Pages 303-313 ; 08888116 (ISSN) ; 9780791849491 (ISBN) Ghanbarzadeh, S ; Hanafizadeh, P ; Hassan, M ; Bozorgmehry, R. B ; Sharif University of Technology
    2010
    Abstract
    In order to safe design and optimize performance of industrial systems which work under two phase flow conditions, it's often needed to categorize flow into different regimes. In present work the experiments of two phase flow were done in a large scale test facility with length of 6m and 5cm diameter. Four main flow regimes were observed in vertical air-water two phase flows at moderate superficial velocities of gas and water: Bubbly, Slug, Churn and Annular. Some image processing techniques were used to extract information from each picture. This information include number of bubbles or objects, area, perimeter, height and width of objects (second phase).Also a texture feature extraction... 

    Evaluation of seepage problem under a concrete dam with finite volume method

    , Article Proceedings of the 7th IASME / WSEAS International Conference on Fluid Mechanics and Aerodynamics, FMA '09, 20 August 2009 through 22 August 2009 ; 2009 , Pages 34-40 ; 9789604741069 (ISBN) Shamsai, A ; Abdi Dezfuli, E ; Zebardast, A ; Sharif University of Technology
    Abstract
    In most of countries, underground waters are the most important sources to provide drinking water. So it is necessary to make scheme and to do high protection of to achieve maximum beneficiary. Necessity of this management is going to be felt by developing these sources and human's interference. However, in the past overtopping phenomenon was the first reason of dam's destruction, but nowadays by increasing of spate design's period, the significant problem that researchers are interfere with, is seepage problem. The purpose of solving the underground problems is to procure height of water as a function of coordinate and time. In observation of practical industries, we can use the... 

    Improved upscaling of reservoir flow using combination of dual mesh method and vorticity-based gridding

    , Article Computational Geosciences ; Volume 13, Issue 1 , 2009 , Pages 57-78 ; 14200597 (ISSN) Firoozabadi, B ; Mahani, H ; Ashjari, M. A ; Audigane, P ; Sharif University of Technology
    Abstract
    A novel technique for upscaling of detailed geological reservoir descriptions is presented. The technique aims at reducing both numerical dispersion and homogenization error generated due to incorporating a coarse computational grid and assigning effective permeability to coarse-grid blocks, respectively. In particular, we consider implicit-pressure explicit-saturation scheme where homogenization error impacts the accuracy of the coarse-grid solution of the pressure equation. To reduce the homogenization error, we employ the new vorticity-based gridding that generates a non-uniform coarse grid with high resolution at high vorticity zones. In addition, to control numerical dispersion, we use... 

    Evaluation of permeable pavement responses to urban surface runoff

    , Article Journal of Environmental Management ; Volume 187 , 2017 , Pages 43-53 ; 03014797 (ISSN) Kamali, M ; Delkash, M ; Tajrishy, M ; Sharif University of Technology
    Academic Press  2017
    Abstract
    The construction of permeable pavement (PP) in sidewalks of urban areas is an alternative low impact development (LID) to control stormwater runoff volume and consequently decrease the discharge of pollutants in receiving water bodies. In this paper, some laboratory experiments were performed to evaluate the efficiency of a PP subjected to sediment loadings during its life span. Simple infiltration models were validated by the laboratory experiments to evaluate the trend and extend of PP infiltration capacity throughout the life of the pavement operation. In addition, performances of the PP in removing total suspended solids (TSS) and selective nutrient pollutants such as NO3 −, NH4 + and... 

    Comparison of finite difference schemes for water flow in unsaturated soils

    , Article World Academy of Science, Engineering and Technology ; Volume 40 , 2009 , Pages 21-25 ; 2010376X (ISSN) Taheri Shahraiyni, H ; Ataie Ashtiani, B ; Sharif University of Technology
    2009
    Abstract
    Flow movement in unsaturated soil can be expressed by a partial differential equation, named Richards equation. The objective of this study is the finding of an appropriate implicit numerical solution for head based Richards equation. Some of the well known finite difference schemes (fully implicit, Crank Nicolson and Runge-Kutta) have been utilized in this study. In addition, the effects of different approximations of moisture capacity function, convergence criteria and time stepping methods were evaluated. Two different infiltration problems were solved to investigate the performance of different schemes. These problems include of vertical water flow in a wet and very dry soils. The... 

    A modeling platform for landslide stability: A hydrological approach

    , Article Water (Switzerland) ; Volume 11, Issue 10 , 2019 ; 20734441 (ISSN) Emadi Tafti, M ; Ataie Ashtiani, B ; Sharif University of Technology
    MDPI AG  2019
    Abstract
    Landslide events are among natural hazards with many fatalities and financial losses. Studies demonstrate that natural factors such as rainfall and human activities such as deforestation are important causes of triggering a landslide. In this study, an integrated two-dimensional slope stability model, SSHV-2D, is developed that considers various aspects of hydrological effects and vegetation impacts on the stability of slopes. The rainfall infiltration and water uptake of roots change the water content of the unsaturated zone. The temporal and spatial distribution of water content is estimated in the hydrological unit of the developed model. The vegetation unit of the model considers... 

    Complete steric exclusion of ions and proton transport through confined monolayer water

    , Article Science ; Volume 363, Issue 6423 , 2019 , Pages 145-148 ; 00368075 (ISSN) Gopinadhan, K ; Hu, S ; Esfandiar, A ; Lozada Hidalgo, M ; Wang, F. C ; Yang, Q ; Tyurnina, A. V ; Keerthi, A ; Radha, B ; Geim, A. K ; Sharif University of Technology
    American Association for the Advancement of Science  2019
    Abstract
    It has long been an aspirational goal to create artificial structures that allow fast permeation of water but reject even the smallest hydrated ions, replicating the feat achieved by nature in protein channels (e.g., aquaporins). Despite recent progress in creating nanoscale pores and capillaries, these structures still remain distinctly larger than protein channels. We report capillaries made by effectively extracting one atomic plane from bulk crystals, which leaves a two-dimensional slit of a few angstroms in height. Water moves through these capillaries with little resistance, whereas no permeation could be detected even for such small ions as Na + and Cl − . Only protons (H + ) can... 

    Thermal performance assessment of an evaporative condenser-based combined heat pump and humidification-dehumidification desalination system

    , Article Desalination ; Volume 496 , 2020 Faegh, M ; Shafii, M. B ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    A new design for heat pump integrated humidification-dehumidification (HDH-HP) desalination cycles was proposed in the current experimental study. An evaporative condenser was designed and fabricated instead of a separate humidifier, heater, and air/water-cooled condensers find in previous HDH-HP systems. Meanwhile, the air dehumidification process in this work directly occurred inside the heat pump evaporator. The effect of several operating parameters such as ambient wet-bulb temperature, spraying saline water and airflow rates, compressor speed, superheat, and evaporator saturation temperature control modes of the electronic expansion valve (EEV) on freshwater production and GOR were...