Loading...
Search for: water-treatment-plants
0.011 seconds

    Treatment of welding electrode manufacturing plant wastewater using coagulation/flocculationnanofiltration as a hybrid process

    , Article Brazilian Journal of Chemical Engineering ; Volume 28, Issue 1 , Mar , 2011 , Pages 73-79 ; 01046632 (ISSN) Golestani, H. A ; Mousavi, M ; Borghei, M ; Sharif University of Technology
    Abstract
    High water consumption and water scarcity make industrial wastewater reuse necessary, especially in those industries characterized by polluted effluents such as welding electrode manufacturing industries. The present paper investigates the coupling of coagulation-flocculation with nanofiltration (NF) to recycle water and reuse it in the process. First, the effect of different concentrations of a mixture of alum (Al2(SO4) 3.18H2O) and ferric chloride (FeCl3) on the pretreatment process was closely studied. Then the NF process was applied for complementary treatment. The NF results show that, by increasing both flow rate and transmembrane pressure (TMP), permeate flux is increased. The NF... 

    The eco-efficiency assessment of wastewater treatment plants in the city of Mashhad using emergy and life cycle analyses

    , Article Journal of Cleaner Production ; Volume 249 , 2020 Alizadeh, S ; Zafari koloukhi, H ; Rostami, F ; Rouhbakhsh, M ; Avami, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    The aim of this study is to evaluate the sustainability of two actual wastewater treatment plants using the eco-efficiency index based on emergy and life cycle analysis. The life cycle analysis is used for environmental investigation to estimate the eco-efficiency index. Moreover, the emergy theory indicating the input and output flows of the ecosystem are applied to assess the sustainability considering ecosystem services. Two treatment plants are studied in the city of Mashhad in Iran. The potential for sustainability improvement of plants is analyzed in some scenarios including the production of agricultural compost from sludge, 10% reduction of energy consumption, and 10% reduction of... 

    Effect of the ozonation pretreatment on biogas production from waste activated sludge of tehran wastewater treatment plant

    , Article Biomass and Bioenergy ; Volume 152 , 2021 ; 09619534 (ISSN) Hodaei, M ; Ghasemi, S ; Khosravi, A ; Vossoughi, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In this study, the ozonation impact on anaerobic digestion of wasted thickened activated sludge of Tehran wastewater treatment plant has been investigated. Regarding that, the thickened activated sludge, a final solid waste of treatment plants, was subjected to ozonation pretreatment to evaluate its characteristics. Three major sludge characteristics were considered for investigating ozonation effects on anaerobic digestion. A comparison of two different ozone doses, i.e., 0.05 and 0.1 gO3 g−1TS was performed for short-term (10 days) and long-term (30 days) sludge retention times. Furthermore, biogas production, sludge composition, dewaterability, and energy balancing, were studied during... 

    Water treatment using stimuli-responsive polymers

    , Article Polymer Chemistry ; Volume 13, Issue 42 , 2022 , Pages 5940-5964 ; 17599954 (ISSN) Abousalman Rezvani, Z ; Roghani Mamaqani, H ; Riazi, H ; Abousalman Rezvani, O ; Sharif University of Technology
    Royal Society of Chemistry  2022
    Abstract
    Water treatment is a process used to eliminate or reduce chemical and biological contaminants that are potentially harmful to the water supply for human use. Stimuli-responsive polymers are a new category of smart materials used in water treatment via a stimuli-induced purification process and subsequent regeneration of the polymers. Stimuli-responsive polymers dynamically change their physico-chemical properties upon environmental changes. They can undergo shrinkage or expansion, alter their optical properties, and change their electrical characteristics depending on the applied stimuli. In this context, various stimuli-responsive polymer systems such as self-assembled nanostructures,... 

    Techno-economic optimization of biogas-fueled micro gas turbine cogeneration systems in sewage treatment plant

    , Article Energy Conversion and Management ; Volume 218 , 15 August , 2020 Movahed, P ; Avami, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    The aim of this paper is to investigate the feasibility of a combined cooling, heating, and power generation system with a micro turbine using biogas as the fuel to supply the heat and electricity demands in a real wastewater treatment plant. The plant is optimized using the system's total cost rate and the amount of the produced biogas as objective functions. The anaerobic digester is modeled using the ADM1 model. The optimization variables include digester hydraulic retention time, compressor pressure ratio, isentropic compressor efficiency, recuperator pinch time temperature, turbine isentropic efficiency, turbine input temperature, and the number of micro turbines. In the first scenario... 

    Upgrading activated sludge systems and reduction in excess sludge

    , Article Bioresource Technology ; Volume 102, Issue 22 , November , 2011 , Pages 10327-10333 ; 09608524 (ISSN) Hazrati, H ; Shayegan, J ; Sharif University of Technology
    2011
    Abstract
    Most of 200 Activated Sludge Plant in Iran are overloaded and as a result, their efficiency is low. In this work, a pilot plant is manufactured and put into operation in one of the wastewater treatment plants in the west of Tehran. Instead of conventional activated sludge, a membrane bioreactor and an upflow anaerobic sludge blanket reactor used as a pretreatment unit in this pilot. For the sake of data accuracy and precision, an enriched municipal wastewater was opted as an influent to the pilot. Based on the attained result, the optimum retention time in this system was 4. h, and the overall COD removal efficiency was 98%. As a whole, the application of this retrofit would increase the... 

    Biological removal of nutrients (N & P) from urban wastewater with a modified integrated fixed-film activated sludge-oxic settling anoxic system using an anoxic sludge holding tank

    , Article Water and Environment Journal ; Volume 35, Issue 2 , 2021 , Pages 830-846 ; 17476585 (ISSN) Fazelipour, M ; Takdastan, A ; Borghei, S. M ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    In this research, the efficiency of the integrated fixed-film activated sludge-oxic settling anoxic (IFAS-OSA) system in biological nutrient removal was studied. The oxic-settling anoxic (OSA) process is known as a cost effective way to reduce the nutrients (nitrogen and Phosphorus). According to the results, the percentages of total nitrogen removal efficiency in the IFAS, IFAS-OSA2h and IFAS-OSA4h systems were 78.56 ± 2.46, 83.60 ± 0.92 and 85.03 ± 1.69, respectively, while the percentages of phosphorus removal efficiency in these systems were 32.69 ± 8.25, 36.35 ± 6.73 and 39.87 ± 3.61, respectively. The PCR-RFLP method showed that C. albicans had the greatest prevalence (n = 36, 90%).... 

    Pharmaceuticals removal by immobilized laccase on polyvinylidene fluoride nanocomposite with multi-walled carbon nanotubes

    , Article Chemosphere ; Volume 263 , 2021 ; 00456535 (ISSN) Masjoudi, M ; Golgoli, M ; Ghobadi Nejad, Z ; Sadeghzadeh, S ; Borghei, S. M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The presence of pharmaceutical micropollutants in water and wastewater is considered a serious environmental issue. To eliminate these pollutants, biodegradation of pharmaceuticals using enzymes such as laccase, is proposed as a green method. In this study, immobilized laccase was used for the removal of two model pharmaceutical compounds, carbamazepine and diclofenac. Polyvinylidene fluoride (PVDF) membrane modified with multi-walled carbon nanotubes (MWCNTs) were synthesized as a tailor-made support for enzyme immobilization. Covalently immobilized laccase from Trametes hirsuta exhibited remarkable activity and activity recovery of 4.47 U/cm2 and 38.31%, respectively. The results also... 

    Hyperbranched polyethylenimine functionalized silica/polysulfone nanocomposite membranes for water purification

    , Article Chemosphere ; Volume 290 , 2022 ; 00456535 (ISSN) Vatanpour, V ; Jouyandeh, M ; Akhi, H ; Mousavi Khadem, S. S ; Ganjali, M. R ; Moradi, H ; Mirsadeghi, S ; Badiei, A ; Esmaeili, A ; Rabiee, N ; Habibzadeh, S ; Koyuncu, I ; Nouranian, S ; Formela, K ; Saeb, M. R ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Hyperbranched polyethyleneimine functionalized silica (PEI-SiO2) nanoparticles with considerable hydrophilicity were synthesized and incorporated into a polysulfone (PSF)/dimethylacetamide (DMA)/polyvinylpyrrolidone (PVP) membrane casting solution in five different ratios to fabricate PEI-SiO2/PSF nanocomposite membranes using nonsolvent-induced phase separation. The hydrophilic PEI-SiO2 nanoparticles were characterized by TEM, FTIR, TGA, and XPS analyses. Morphology, water contact angles, mean pore sizes, overall porosity, tensile strengths, water flux, antifouling and the dye separation performances of the PEI-SiO2/PSF membranes were also studied. The PEI-SiO2 nanoparticles were uniformly...