Loading...
Search for: weakly-compressible
0.004 seconds

    SPH simulation of interacting solid bodies suspended in a shear flow of an Oldroyd-B fluid

    , Article Journal of Non-Newtonian Fluid Mechanics ; Volume 166, Issue 21-22 , November , 2011 , Pages 1239-1252 ; 03770257 (ISSN) Hashemi, M. R ; Fatehi, R ; Manzari, M. T ; Sharif University of Technology
    2011
    Abstract
    An explicit weakly compressible SPH method is introduced to study movement of suspended solid bodies in Oldroyd-B fluid flows. The proposed formulation does not need further stabilizing treatments and can be efficiently employed to study particulate flows with Deborah to Reynolds number ratios up to around 10. A modified boundary treatment technique is also presented which helps to deal with the movement of solid particles in the flow. The technique is computationally efficient and gives an improved evaluation of fluid-solid interaction forces.A number of test cases are solved to show performance of the proposed method in simulating particulate viscoelastic flows containing circular and... 

    Modification of weakly compressible smoothed particle hydrodynamics for preservation of angular momentum in simulation of impulsive wave problems

    , Article Coastal Engineering Journal ; Volume 51, Issue 4 , 2009 , Pages 363-386 ; 05785634 (ISSN) Ataie Ashtiani, B ; Mansour Rezaei, S ; Sharif University of Technology
    Abstract
    In this work, Weakly Compressible Smoothed Particle Hydrodynamics (WCSPH) is applied for numerical simulation of impulsive wave. Properties of linear and angular momentum in WCSPH formulation are studied. Kernel gradient of viscous term in momentum equation is corrected to ensure preservation of angular momentum. Corrected WCSPH method is used to simulate solitary Scott Russell wave and applied to simulate impulsive wave generated by two-dimensional under water landslide. In each of the test cases, results of corrected WCSPH are compared with experimental results. The results of the numerical simulations and experimental works are matched and a satisfactory agreement is observed.... 

    A modified SPH method for simulating motion of rigid bodies in Newtonian fluid flows

    , Article International Journal of Non-Linear Mechanics ; Volume 47, Issue 6 , 2012 , Pages 626-638 ; 00207462 (ISSN) Hashemi, M. R ; Fatehi, R ; Manzari, M. T ; Sharif University of Technology
    2012
    Abstract
    A weakly compressible smoothed particle hydrodynamics (WCSPH) method is used along with a new no-slip boundary condition to simulate movement of rigid bodies in incompressible Newtonian fluid flows. It is shown that the new boundary treatment method helps to efficiently calculate the hydrodynamic interaction forces acting on moving bodies. To compensate the effect of truncated compact support near solid boundaries, the method needs specific consistent renormalized schemes for the first and second-order spatial derivatives. In order to resolve the problem of spurious pressure oscillations in the WCSPH method, a modification to the continuity equation is used which improves the stability of... 

    A consistent and fast weakly compressible smoothed particle hydrodynamics with a new wall boundary condition

    , Article International Journal for Numerical Methods in Fluids ; Volume 68, Issue 7 , May , 2012 , Pages 905-921 ; 02712091 (ISSN) Fatehi, R ; Manzari, M. T ; Sharif University of Technology
    2012
    Abstract
    A modified weakly compressible smoothed particle hydrodynamics (WCSPH) is presented, which utilizes consistent discretization schemes for spatial derivatives in the flow equations. Here, each SPH particle is considered as a computational point that represents a specific part of the fluid. To overcome non-physical oscillations that usually arise in standard WCSPH, we modified the mass conservation equation by using a numerical filter. This modification is based on the difference between two discretization schemes used for the term ∇{dot operator}∇Pρ. Furthermore, a new implementation of wall boundary condition in SPH is introduced. This condition is imposed on the pressure of wall boundary... 

    A remedy for numerical oscillations in weakly compressible smoothed particle hydrodynamics

    , Article International Journal for Numerical Methods in Fluids ; Volume 67, Issue 9 , September , 2011 , Pages 1100-1114 ; 02712091 (ISSN) Fatehi, R ; Manzari, M. T ; Sharif University of Technology
    2011
    Abstract
    Weakly Compressible Smoothed Particle Hydrodynamics (WCSPH) can lead to non-physical oscillations in the pressure and density fields when simulating incompressible flow problems. This in turn may result in tensile instability and sometimes divergence. In this paper, it is shown that this difficulty originates from the specific form of spatial discretization used for the pressure term when solving the mass conservation equation. After describing the pressure-velocity decoupling problem associated with the so-called colocated grid methods, a modified approach is presented that overcomes this problem using a different discretization scheme for the second derivative of pressure. The modified...