Loading...
Search for: weight-lifting
0.013 seconds

    Can lumbosacral orthoses cause trunk muscle weakness? A systematic review of literature

    , Article Spine Journal ; Volume 17, Issue 4 , 2017 , Pages 589-602 ; 15299430 (ISSN) Azadinia, F ; Ebrahimi Takamjani, E ; Kamyab, M ; Parnianpour, M ; Cholewicki, J ; Maroufi, N ; Sharif University of Technology
    Elsevier Inc  2017
    Abstract
    Background Wearing lumbosacral orthosis (LSO) is one of the most common treatments prescribed for conservative management of low back pain. Although the results of randomized controlled trials suggest effectiveness of LSO in reducing pain and disability in these patients, there is a concern that prolonged use of LSO may lead to trunk muscle weakness and atrophy. Purpose The present review aimed to evaluate available evidence in literature to determine whether LSO results in trunk muscle weakness or atrophy. Study Design This is a systematic review. Methods A systematic search of electronic databases including PubMed, Scopus, ScienceDirect, and Medline (via Ovid) followed by hand search of... 

    Improved artificial neural networks for 3D body posture and lumbosacral moment predictions during manual material handling activities

    , Article Journal of Biomechanics ; Volume 131 , 2022 ; 00219290 (ISSN) Mohseni, M ; Aghazadeh, F ; Arjmand, N ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Body posture measurement approaches, required in biomechanical models to assess risk of musculoskeletal injuries, are usually costly and/or impractical for use in real workplaces. Therefore, we recently developed three artificial neural networks (ANNs), based on measured posture data on several individuals, to predict whole body 3D posture (coordinates of 15 markers located on body's main joints), segmental orientations (Euler angles of 14 body segments), and lumbosacral (L5-S1) moments during static manual material handling (MMH) activities (ANNPosture, ANNAngle, and ANNMoment, respectively). These ANNs require worker's body height, body weight (only for ANNMoment), hand-load 3D position,... 

    Revised NIOSH Lifting Equation May generate spine loads exceeding recommended limits

    , Article International Journal of Industrial Ergonomics ; Volume 47 , 2015 , Pages 1-8 ; 01698141 (ISSN) Arjmand, N ; Amini, M ; Shirazi Adl, A ; Plamondon, A ; Parnianpour, M ; Sharif University of Technology
    Elsevier  2015
    Abstract
    The 1991 NIOSH Lifting Equation (NLE) is widely used to assess the risk of injury to spine by providing estimates of the recommended weight limit (RWL) in hands. The present study uses the predictive equations developed based on a detailed trunk musculoskeletal biomechanical model to verify whether the RWL generates L5-S1 loads within the limits (e.g., 3400N for compression recommended by NIOSH and 1000N for shear recommended in some studies). Fifty lifting activities are simulated here to evaluate the RWL by the NLE and the L5-S1 loads by the predictive equations. In lifting activities involving moderate to large forward trunk flexion, the estimated RWL generates L5-S1 spine loads exceeding... 

    Effect of body weight on spinal loads in various activities: A personalized biomechanical modeling approach

    , Article Journal of Biomechanics ; Volume 48, Issue 2 , 2015 , Pages 276-282 ; 00219290 (ISSN) Hajihosseinali, M ; Arjmand, N ; Shirazi Adl, A ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Epidemiological studies are divided over the causative role of body weight (BW) in low back pain. Biomechanical modeling is a valuable approach to examine the effect of changes in BW on spinal loads and risk of back pain. Changes in BW have not been properly simulated by previous models as associated alterations in model inputs on the musculature and moment arm of gravity loads have been neglected. A detailed, multi-joint, scalable model of the thoracolumbar spine is used to study the effect of BW (varying at five levels, i.e., 51, 68, 85, 102, and 119kg) on the L5-S1 spinal loads during various static symmetric activities while scaling moment arms and physiological cross-sectional areas of...