Loading...
Search for: weighted-least-squares-solutions
0.01 seconds

    Target localization in distributed MIMO radar from time delays, doppler shifts, azimuth and elevation angles of arrival

    , Article 27th Iranian Conference on Electrical Engineering, ICEE 2019, 30 April 2019 through 2 May 2019 ; 2019 , Pages 1498-1503 ; 9781728115085 (ISBN) Noroozi, A ; Navebi, M. M ; Amiri, R ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    In this paper, we focus on the moving target localization problem in a multiple-input multiple-output radar with widely separated antennas. By exploiting jointly different types of information including time delay, Doppler shift and azimuth and elevation angles of arrival, we develop an algebraic closed-form two-stage weighted least squares solution for the problem. The proposed algorithm is shown analytically to attain the CramerRao lower bound accuracy under the small Gaussian noise assumption. Numerical simulations are included to examine the algorithm's performance and corroborate the theoretical developments  

    Improved algebraic solution for elliptic localization in distributed MIMO radar

    , Article 26th Iranian Conference on Electrical Engineering, ICEE 2018, 8 May 2018 through 10 May 2018 ; 2018 , Pages 383-388 ; 9781538649169 (ISBN) Noroozi, A ; Sebt, M. A ; Hosein Oveis, A ; Amiri, R ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    In this paper, the problem of locating a target in a distributed multiple-input multiple-output radar system using bistatic range measurements is addressed. An algebraic closed-form two-stage weighted least squares solution for the considered problem is developed and analyzed. In the first stage, we establish a set of linear equations by eliminating the nuisance parameters first and then we apply a weighted least squares estimator to determine the target position estimate. In the second stage, in order to improve the localization performance and refine the solution of the first stage, an estimate of the target position estimation error is obtained. The final solution is obtained by... 

    Efficient closed-form solution for moving target localization in mimo radars with minimum number of antennas

    , Article IEEE Transactions on Signal Processing ; Volume 68 , 2020 , Pages 2545-2557 Noroozi, A ; Amiri, R ; Nayebi, M. M ; Farina, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    This paper deals with the moving target localization problem from time delay and Doppler shift measurements in a distributed multiple-input multiple-output radar system. An algebraic closed-form two-stage weighted least squares solution is presented to locate the target position and velocity. In the first stage, a set of pseudo-linear equations is established by introducing and decreasing the nuisance parameters. Then, two quadratic equations are obtained in terms of the nuisance parameters by considering relationships among them and the target position and velocity. By applying the elimination method that gives the nuisance parameters and substituting them into the localization problem, the...