Loading...
Search for: wo3
0.006 seconds

    Detecting hydrogen using graphene quantum dots/WO3 thin films

    , Article Materials Research Express ; Volume 3, Issue 11 , 2016 ; 20531591 (ISSN) Fardindoost, S ; Iraji Zad, A ; Hosseini, Z. S ; Hatamie, S ; Sharif University of Technology
    Institute of Physics Publishing 
    Abstract
    In the present work we report an approach to resistive hydrogen sensing based on graphene quantum dots(GQDs)/WO3 thin films that work reproducibly at low temperatures. GQDs were chemically synthesized and evenly dispersed in WO3 solution with 1:1 molar ratio. The structural evaluation and crystallization of the prepared films was studied by X-ray diffraction, Raman and scanning electron microscopy (SEM) techniques. The SEM images showed uniform distribution of the GQDs in WO3 films with sizes around 50 nm. Raman experiment showed the GQDs are partially reduced with high edge defects as hydroxyl and carboxyl groups which involve both in bridging between WO3 grains via bindings as well as... 

    Hydrogen sensing properties of pure and Pd activated WO3 nanostructured films

    , Article Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry ; Volume 37, Issue 6 , 2007 , Pages 453-456 ; 15533174 (ISSN) Ghadiri, E ; Iraji zad, A ; Razi, F ; Sharif University of Technology
    2007
    Abstract
    Pure and Pd-doped WO3 Nanocrystalline tungsten oxide films on alumina substrates were prepared via sol-gel method from peroxopolytungstic acid. AFM, XRD, SEM, XPS methods were used to determine the surface morphology, grain size and layer composition. XRD analysis showed WO3 nanocrystalline particles in monoclinic phase and with average size of about 333nm, which was consistent with SEM analysis results. Sensing properties of samples toward H2 gas was studied. The sensitivity of WO3 nanocrystalline films was about 4 at 2300ppm (0.2%) H2 gas. Introducing Pd to the system led to an increase in the sensitivity about 2 orders of magnitude. The sensitivity of Pd: WO3 was about 400 at 2300ppmH2  

    H2S sensing properties of added copper oxide in WO3

    , Article Key Engineering Materials ; Volume 543 , March , 2013 , Pages 145-149 Nowrouzi, R. (Rasoul) ; Razi Astaraei, F. (Fatemeh) ; Kashani, Sh. (shima) ; Iraji Zad, A. (Azam) ; Sharif University of Technology
    Abstract
    We study Hydrogen sulfide gas detection properties of pure and 1% copper oxide added WO3 thin films. The spin coated deposits on alumina substrates were annealed at 500 C for 1 hour in order to improve the crystallinity of the films. The sensitivity of pure tungsten oxide is poor even at temperatures of about 100 C but the doped samples exhibit good response to H2S gas. Our data show sensitivity of about 1500 in 10 ppm diluted gas in air at 100 C. The films are sensitive to the gas even at 250 ppb (sensitivity about 2) H2S concentration at 100 C but with rather long recovery time. Crystal structure, morphology and chemical composition of samples were studied by X-Ray diffraction (XRD),... 

    Studying and Synthesize of H2S Gas Sensors Based on Modified WO3 Nanostructure Thin Films

    , M.Sc. Thesis Sharif University of Technology Kashani, Shima (Author) ; Iraji zad, Aazam (Supervisor) ; Rahimi, Fereshte (Co-Advisor)
    Abstract
    H2S is a toxic gas used in chemical laboratories and industries. H2S is also liberated in nature due to biological processes and also from mines and petroleum fields. At some threshold level, exposure to concentrations over 10 ppm can result in headaches, irritability, dizziness and in some case leads to death. So that introducing sensors which sense H2S at ppm level with the low response time is so essential. The present work emphasizes on H2S resistance-sensing properties of pure and Pd doped WO3 films prepared by Arc discharge method. XRD, SEM, EDAX and XPS were applied to analyze crystal structure, morphology and chemical composition of the films. The analyzes results showed that films... 

    Oxidative desulfurization of a model liquid fuel over an rGO-supported transition metal modified WO3 catalyst: Experimental and theoretical studies

    , Article Separation and Purification Technology ; Volume 269 , 2021 ; 13835866 (ISSN) Hasannia, S ; Kazemeini, M ; Seif, A ; Rashidi, A ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    The XW/rGO compounds (XW = Co or Ni modified WO3) have has been utilized as catalysts in the oxidative desulfurization (ODS) process of a liquid model fuel containing dibenzothiophene (DBT). Various characterization methods were carried out to complete evaluations of the prepared catalysts. Moreover, using the GC–MS method, it became clear that the final product of the process was dibenzothiophene sulfone (DBTO2). Furthermore, results showed that under the optimized conditions (oxidant to substrate molar ratio = 6, 75 °C and catalyst to substrate molar ratio = 0.08), the DBT content of a model fuel was declined by 100% only within a reaction duration time of 45 min using the CoW (20)/rGO... 

    An Investigation on Physical and Photochemical Properties of Sol-Gel Derived MWCNT-WO3 Nanocomposite thin Films

    , M.Sc. Thesis Sharif University of Technology Yousefzadeh, Samira (Author) ; Moshfegh, Alireza (Supervisor)
    Abstract
    WO3 have good electrochromic, gas sensor, photocatalyst, phoelectrochemical (PEC) properties. due its properties, tungsten oxide have many application in technology and industry. In this thesis, pure WO3 thin film and MWCNT-WO3 nanocomposite thin films with different weight percent of MWCNT/WO3 utilize for energy domain, particular hydrogen production with phoelectrochemical reactions spiliting water. For this purpose, initially WO3 thin films were deposited on glass and ITO substrates using sol-gel dip-coating method. Optical and surface properties of the films dried at 100ºC and annealed at 400 ºC had been investigated. UV-Visible spectrophotometer, atomic force microscopy (AFM), X-ray... 

    Doping Effect of Copper and Copper Oxide on H2S Sensing of Nanostructured WO3

    , M.Sc. Thesis Sharif University of Technology Nowrouzi, Rasoul (Author) ; Iraji Zad, Azam (Supervisor)
    Abstract
    The aim of this research is preparation of tungsten trioxide nanoparticles film for hydrogen sulfide gas sensing. These nanoparticles were made by simple and inexpensive sol-gel method. To improve gas sensing properties, various precursors of copper and copper oxides were added to the sol. This solution was coated on alumina substrate by spin coating method. After annealing, sensing properties of samples were studied by measuring the electrical resistance. Best precursor and its molar percentage of copper to tungsten were selected (WO3-Cu2O (1%)). All tests for this sample were done in temperatures below 100 °C and gas concentration lower than 10 ppm. Sensitivity of WO3-Cu2O (1%) to 1 ppm... 

    MWCNT/WO3 nanocomposite photoanode for visible light induced water splitting

    , Article Journal of Solid State Chemistry ; Volume 204 , 2013 , Pages 341-347 ; 00224596 (ISSN) Yousefzadeh, S ; Reyhani, A ; Naseri, N ; Moshfegh, A. Z ; Sharif University of Technology
    2013
    Abstract
    The Multi-walled carbon nanotube (MWCNT)/WO3 nanocomposite thin films with different MWCNT's weight percentages were prepared by sol-gel method as visible light induced photoanode in water splitting reaction. Weight percentage of MWCNT in the all nanocomposite thin films was confirmed by TGA/DSC analysis. According to XPS analysis, oxygenated groups at the surface of the MWCNT and stoichiometric formation of WO3 thin films were determined, while the crystalline structure of the nanocomposite samples was studied by XRD indicating (0 0 2) peak of MWCNT in the monoclinic phase of WO3. The influence of different weight percentage (wt%) of MWCNT on WO3 photoactivity showed that the electron... 

    Nickel-doped monoclinic WO3 as high performance anode material for rechargeable lithium ion battery

    , Article Journal of Electroanalytical Chemistry ; Volume 894 , 2021 ; 15726657 (ISSN) Rastgoo Deylami, M ; Javanbakht, M ; Omidvar, H ; Hooshyari, K ; Salarizadeh, P ; Askari, M. B ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    The anode materials are one of the critical components in rechargeable lithium ion batteries (LIBs). The monoclinic tungsten trioxide (mWO3) is introduced as interesting anode electrode for LIBs due to its good structure for intercalation and de-intercalation of lithium ions, high abundance and various oxidation state of tungsten and etc. In this study, we prepare and investigate the effect of various amounts of nickel dopant on characteristics and electrochemical properties of the mWO3 as the anode electrode in a rechargeable LIB. The experimental investigations confirm that the number of nickel atoms has a remarkable effect on controlling spherical particle diameter, crystallite size, and... 

    Fabrication of Pd doped WO3 nanofiber as hydrogen sensor

    , Article Polymers ; Volume 5, Issue 1 , 2013 , Pages 45-55 ; 20734360 (ISSN) Nikfarjam, A ; Fardindoost, S ; Zad, A. I ; Sharif University of Technology
    2013
    Abstract
    Pd doped WO3 fibers were synthesized by electro-spinning. The sol gel method was employed to prepare peroxopolytungstic acid (P-PTA). Palladium chloride and Polyvinyl pyrrolidone (PVP) was dissolved in the sol Pd:WO3 = 10% molar ratio. The prepared sol was loaded into a syringe connected to a high voltage of 18.3 kV and electrospun fibers were collected on the alumina substrates. Scanning electron microscope (SEM), X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) techniques were used to analyze the crystal structure and chemical composition of the fibers after heat treatment at 500 °C. Resistance-sensing measurements exhibited a sensitivity of about 30 at 500 ppm... 

    Visible light-induced photocatalytic reduction of graphene oxide by tungsten oxide thin films

    , Article Applied Surface Science ; Volume 276 , 2013 , Pages 628-634 ; 01694332 (ISSN) Choobtashani, M ; Akhavan, O ; Sharif University of Technology
    2013
    Abstract
    Tungsten oxide thin films (deposited by thermal evaporation or sol gel method) were used for photocatalytic reduction of graphene oxide (GO) platelets (synthesized through a chemical exfoliation method) on surface of the films under UV or visible light of the environment, in the absence of any aqueous ambient at room temperature. Atomic force microscopy (AFM) technique was employed to characterize surface morphology of the GO sheets and the tungsten oxide films. Moreover, using X-ray photoelectron spectroscopy (XPS), chemical state of the tungsten oxide films and the photocatalytic reduction of the GO platelets were quantitatively investigated. The better performance of the sol-gel tungsten... 

    Photoresponse and H2 production of topographically controlled PEG assisted Sol-gel WO3 nanocrystalline thin films

    , Article International Journal of Hydrogen Energy ; Volume 36, Issue 21 , October , 2011 , Pages 13461-13472 ; 03603199 (ISSN) Naseri, N ; Yousefzadeh, S ; Daryaei, E ; Moshfegh, A. Z ; Sharif University of Technology
    2011
    Abstract
    WO3 thin films were fabricated by sol-gel method using polyethylene glycol (PEG) as dispersing agent. Physical and photoelectrochemical properties of the synthesized nanocrystalline films were studied by varying weight ratio of PEG to tungsten precursor (x). Based on AFM observations and statistical modeling of the WO3 surface, the thickness of the films increased by increasing the amount of x with a nearly linear fashion while the surface roughness reached to a saturated value. However, the film synthesized with x = 4 showed a chaotic surface behavior. Optical analysis revealed that by increasing the x, transmittance of the films decreased while their band gap energies remained unchanged.... 

    Hydrogen sensor based on surface activated WO3 films by Pd nanoclusters

    , Article World Academy of Science, Engineering and Technology ; Volume 76 , 2011 , Pages 639-642 ; 2010376X (ISSN) Fardindoost, S ; Zad, A. I ; Mahdavi, S. M ; Sharif University of Technology
    2011
    Abstract
    Tungsten trioxide has been prepared by using P-PTA as a precursor on alumina substrates by spin coating method. Palladium introduced on WO 3 film via electrolysis deposition by using palladium chloride as catalytic precursor. The catalytic precursor was introduced on the series of films with different morphologies. X-ray diffractometry (XRD), Scanning electron microscopy (SEM) and XPS were applied to analyze structure and morphology of the fabricated thin films. Then we measured variation of samples' electrical conductivity of pure and Pd added films in air and diluted hydrogen. Addition of Pd resulted in a remarkable improvement of the hydrogen sensing properties of WO 3 by detection of... 

    Synthesis and optical properties of Au decorated colloidal tungsten oxide nanoparticles

    , Article Applied Surface Science ; Volume 355 , November , 2015 , Pages 884-890 ; 01694332 (ISSN) Tahmasebi, N ; Mahdavi, S. M ; Sharif University of Technology
    Elsevier  2015
    Abstract
    In this study, colloidal tungsten oxide nanoparticles were fabricated by pulsed laser ablation of tungsten target using the first harmonic of a Nd:YAG laser (1064 nm) in deionized water. After ablation, a 0.33 g/lit HAuCl4 aqueous solution was added into as-prepared colloidal nanoparticles. In this process, Au3+ ions were reduced to decorate gold metallic state (Au0) onto colloidal tungsten oxide nanoparticles surface. The morphology and chemical composition of the synthesized nanoparticles were studied by AFM, XRD, TEM and XPS techniques. UV-Vis analysis reveals a distinct absorption peak at ∼530 nm. This peak can be attributed to the surface plasmon resonance (SPR) of Au and confirms... 

    Pd doped WO3 films prepared by sol-gel process for hydrogen sensing

    , Article International Journal of Hydrogen Energy ; Volume 35, Issue 2 , 2010 , Pages 854-860 ; 03603199 (ISSN) Fardindoost, S ; Iraji zad, A ; Rahimi, F ; Ghasempour, R ; Sharif University of Technology
    Abstract
    The sol gel method was employed to prepare peroxopolytungstic acid (P-PTA). Palladium chloride salt was dissolved in the sol with different Pd:W molar ratios and coated on Al2O3 substrates by spin coating method. XRD and XPS techniques were used to analyze the crystal structure and chemical composition of the films before and after heat treatment at 500 °C. We observed that Pd can modify the growth kinetic of tungsten trioxide nanoparticles by reducing the crystallite size and as a result can improve hydrogen sensitivity. Resistance-sensing measurements indicated sensitivity of about 2.5 × 104 at room temperature in hydrogen concentration of 0.1% in air. Considering all sensing parameters,... 

    Enhanced performance of planar perovskite solar cells using TiO2/SnO2 and TiO2/WO3 bilayer structures: Roles of the interfacial layers

    , Article Solar Energy ; Volume 208 , 2020 , Pages 697-707 Kazemzadeh Otoufi, M ; Ranjbar, M ; Kermanpur, A ; Taghavinia, N ; Minbashi, M ; Forouzandeh, M ; Ebadi, F ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In planar perovskite solar cells (PSCs), engineering the extraction and recombination of electron–hole pairs by modification of the electron transport layer (ETL)/perovskite interface is very vital for obtaining high performance. The main idea here is to improve properties of the TiO2/perovskite interface by inserting an ultra-thin layer (UTL) of WO3 or SnO2 with the thickness of less than 10 nm by RF magnetron sputtering method. The structural and electrical characteristics of the samples were tested by XRD, AFM, FE-SEM, Mott-Schottky analysis, UV–Vis spectroscopy, J-V characterization and electrochemical impedance spectroscopy (EIS). It was found that the bilayer structured ETLs exhibit... 

    Smart protection of surfaces during day-night by a novel composite self-cleaning coating with catalytic memory

    , Article Journal of Environmental Chemical Engineering ; Volume 10, Issue 1 , 2022 ; 22133437 (ISSN) Mokhtarifar, M ; Nguyen, D. T ; Sakar, M ; Lucotti, A ; Asa, M ; Kaveh, R ; Diamanti, M. V ; Pedeferri, M ; Do, T.-O ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    For the first time this work reports a new idea to develop a round-the-clock self-cleaning coating which was successfully applied to preserve cultural heritage and modern artifacts under sunlight illumination and at night. To fabricate this structure, namely, H2:TiO2/WO3@Pt, soft templating and hydrogen treatment approaches were selected to enhance the performance of TiO2/WO3 photocatalyst, together with the addition of Pt plasmonic nanoparticles. The coating can be photochemically charged in the presence of sacrificial electron donors and keep its stability, benefiting from the remained electrons stock for over 10 h to clean the surface from aggressive pollution also at night, in absence of... 

    New gasochromic system: Nanoparticles in liquid

    , Article Journal of Nanoparticle Research ; Volume 14, Issue 4 , March , 2012 ; 13880764 (ISSN) Ranjbar, M ; Kalhori, H ; Mahdavi, S. M ; Zad, A. I ; Sharif University of Technology
    2012
    Abstract
    In this study, WO 3 nanocrystallites were first produced by laser ablation of W target in deionised water. To synthesize palladium, a PdCl 2 solution (0.2 g/L) was added to the liquid. Transmission electron microscope revealed successful synthesis of tungsten oxide nanocrystallites along with the production of Pd and core-shell Pd/WO3 nanoparticles. Gasochromic behavior was examined by hydrogen bubbling into Pd/WO 3 liquid in which a transition to blue absorbing state was observed. Optical absorption spectra of the colored liquid represented different sharp small polaron absorbing peaks below 3 eV and the peaks intensity was observed to be varied with Pd:WO 3 ratio. Time variations of...