Loading...
Search for: workability
0.008 seconds

    Investigation of Nano Scale Cementite Workability by Using Molecular Dynamics Simulation

    , Ph.D. Dissertation Sharif University of Technology Ghaffarian, Hadi (Author) ; Karimi Taheri, Ali (Supervisor)
    Abstract
    In this study, the nano-scale deformation mechanism of cementite was investigated with aid of Molecular dynamics (MD) simulation using MEAM potential. For this purpose, flow localization was evaluated in various structures such as single crystal cementite, nanocrystalline (NC) cementite, and lamellar cementite at various temperatures and different stress conditions. In order to understand the deformation mechanism in the cementite single crystal, two cylindrical samples with 15 nm length and 5 nm diameter oriented along [001] and [011] were constructed. The result of tensile test simulation at 100 K, 300 K, 700 K and 1100 K revealed that the deformation mechanism in single crystal cementite... 

    Hot workability of ultrafine-grained aluminum alloy produced by severe plastic deformation of Al6063 powder and consolidation [electronic resource]

    , Article Materials Science Forum ; Volume 667-669, 2011, Pages 979-984 Asgharzadeh, H. (Hamed) ; Simchi, A. (Abdolreza) ; Seop Kim, Hyoung ; Sharif University of Technology
    Abstract
    Al6063 powder was subjected to severe plastic deformation via high-energy mechanical milling to prepare ultrafine-grained (UFG) aluminium alloy. Uniaxial compression test at various temperatures between 300 and 450 °C and strain rates between 0.01 and 1 s-1 was carried out to evaluate hot workability of the material. Microstructural studies were performed by EBSD and TEM. The average activation energy and strain rate sensitivity of the hot deformation process were determined to be 280 kJ mol-1 and 0.05, respectively. The deformation temperature and applied strain rate significantly affected the grain structure of UFG Al alloy. A finer grain structure was obtained at lower temperatures and... 

    An Investigation on Mechanical Properties of Mg-CNT Composites Produced using the Casting Process

    , M.Sc. Thesis Sharif University of Technology Mousavi Nezhad, Hadi (Author) ; Karimi Taheri, Ali (Supervisor)
    Abstract
    Since the discovery of nanomaterials, the nanotubes have found special considerations. The high strength beside the low density, have attracted the interest of the scientists and engineers. Nowadays, one of the common methods to produce composites with high specific strength is to utilize of the nanotubes in the matrix of lightweight metals and alloys such as magnesium and aluminum. Recent researches indicate that very limited focus has been given to the production and properties of the magnesium - carbon nanotube composites and their workability. In this research, magnesium alloy - carbon nanotube composite is produced by casting method and its strength and workability are investigated as... 

    A study on flow behavior of A-286 superalloy during hot deformation

    , Article Materials Chemistry and Physics ; Volume 101, Issue 1 , 2007 , Pages 153-157 ; 02540584 (ISSN) Salehi, A. R ; Serajzadeh, S ; Yazdipour, N ; Sharif University of Technology
    2007
    Abstract
    The hot deformation behavior of A-286 superalloy has been characterized using hot compression experiments in the temperatures between 1000 and 1100 °C and strain rates varying between 0.001 and 0.1 s-1. In addition, hot workability of this alloy has been analyzed by employing flow-localization parameter. The results show that both kinds of softening mechanism, dynamic recovery and dynamic recrystallization, occur during hot working, where at 1000 °C the main mechanism is dynamic recovery and at higher temperatures and strain rate of 0.001-0.01 s-1 dynamic recrystallization takes place. Calculations demonstrates that this alloy mainly have a good workability for the utilized deformation... 

    Property change during fixtured sintering of NiTi memory alloy

    , Article Materials and Manufacturing Processes ; Volume 21, Issue 1 , 2006 , Pages 87-96 ; 10426914 (ISSN) Sadrnezhaad, S. K ; Lashkari, O ; Sharif University of Technology
    2006
    Abstract
    Fixtured sintering of up to 5 hours at 1223 to 1323 K is successfully used to diminish the dimensional change of NiTi memory alloys produced from mixtures of elemental Ni and Ti powders packed and pressed at room temperature under 400, 500, and 600 MPa pressure. The improvements obtained can help near-net-shape technology via powder metallurgy that overcomes the traditional casting problems such as oxygen, nitrogen, hydrogen, and carbon absorption and intermetallic compound precipitation, which lower the workability and the homogeneity of the final alloy. The effects of compaction pressure, sintering time, and sintering temperature on dimensional change, porosity, hardness, and morphology of... 

    Behavior Investigation of Self-compacting Concrete (SCC) Beams Reinforced by Steel Fibers

    , M.Sc. Thesis Sharif University of Technology Molaei Raisi, Elias (Author) ; Khaloo, Alireza (Supervisor)
    Abstract
    In the recent decades, self-compacting concrete (SCC) has been introduced as high workable concrete that under its own weight and without any impact or vibration fills the framework. Using fibers in concrete was attended by engineers and researchers for decades. These days, fibers were used in bridges, beams, columns, dams, retaining walls and sidewalk. Steel fibers reduce the low tensile strength of concrete and also by bridging between the cracks the absorbed energy of concrete has been increased. Concrete elements can also resist much load, especially impact and explosion load by reinforcing with steel fibers. In past, a lot of researches about using fibers in concrete have been... 

    Optimizing a bi-objective multi-product EPQ model with defective items, rework and limited orders: NSGA-II and MOPSO algorithms

    , Article Journal of Manufacturing Systems ; Volume 32, Issue 4 , 2013 , Pages 764-770 ; 02786125 (ISSN) Pasandideh, S. H. R ; Niaki, S. T. A ; Sharafzadeh, S ; Sharif University of Technology
    2013
    Abstract
    In this paper, a bi-objective multi-products economic production quantity (EPQ) model is developed, in which the number of orders is limited and imperfect items that are re-workable are produced. The objectives of the problem are minimization of the total inventory costs as well as minimizing the required warehouse space. The model is shown to be of a bi-objective nonlinear programming type, and in order to solve it two meta-heuristic algorithms namely, the non-dominated sorting genetic algorithm (NSGA-II) and multi-objective particle swarm optimization (MOPSO) algorithm, are proposed. To verify the solution obtained and to evaluate the performance of proposed algorithms, two-sample t-tests... 

    Reduction of cement consumption by the aid of silica nano-particles (investigation on concrete properties)

    , Article Journal of Civil Engineering and Management ; Volume 18, Issue 3 , 2012 , Pages 416-425 ; 13923730 (ISSN) Bahadori, H ; Hosseini, P ; Sharif University of Technology
    2012
    Abstract
    In this study, effects of replacing cement with colloidal amorphous silica nano-particles have been experimentally investigated on the physical and mechanical properties, durability and microstructure of concrete. Experimental results include workability, fresh concrete density, and hardened concrete properties like compressive strength at different ages of 3, 7, and 28-days, and also 28-days splitting tensile strength. Furthermore, influence of silica nano-particles on durability and microstructure of concrete for 28-days specimens was tested by conducting water absorption test, Scanning Electron Microscopy (SEM), and Energy Dispersive X-ray Analysis (EDAX), respectively. In order to study... 

    A study on the cementitious mortars containing multi-walled carbon nanotubes and nanographene

    , Article Journal of Testing and Evaluation ; Volume 51, Issue 2 , 2022 ; 00903973 (ISSN) Pachideh, G ; Toufigh, V ; Sharif University of Technology
    ASTM International  2022
    Abstract
    In this paper, the effects of the multi-walled carbon nanotubes (MWCNTs) and nanographene (GP) on the mechanical performance of the cementitious mortars were investigated in different environments. Six mix designs were fabricated by considering the previous studies and exposed to potable water, acidic, and alkaline environments. The GP and MWCNTs partially replaced the cement with 0.25 %, 0.5 %, and 1 % of its weight. The standard mechanical tests, X-ray diffraction (XRD), and scanning electron microscope (SEM) analysis were performed on the specimens. The results indicated that including the MWCNTs and GP increases the compressive strength by 10 % and 20 % and similarly improves the tensile... 

    Hot Workability of a Free-cutting Steel with Severe Sulfur Segregation During Continuous Casting

    , M.Sc. Thesis Sharif University of Technology Naghdy, Soroosh (Author) ; Akbarzadeh, Abbas (Supervisor)
    Abstract
    Splitting in ingot cast structures and transverse cracks in continuous cast structures are the main problems of hot rolling of low carbon resulfurized free-cutting (LCRF) steels. Presence of high volume fraction of manganese sulfide inclusions in cast structure increases the risk of alligatoring in hot rolling. Because of high sulfur content of these steels and probability of formation of low melting point phases, minimum level of manganese and maximum level of copper and tin is necessary. Morphology of manganese sulfide is another important factor in hot forming of these steels, which can be controlled by level of deoxidation in steel making. In fact, MnS2 is present in fully killed... 

    Evaluation of Laboratory Methods for Estimation of Mixing and Compaction Temperatures of Rubber Modified Asphalt Mixtures

    , M.Sc. Thesis Sharif University of Technology Ebrahimzadeh, Mohammad (Author) ; Tabatabaee, Nader (Supervisor)
    Abstract
    One of the major challenges in construction of rubber modified asphalt mixtures is determination of mixing and compaction temperature (MCT). In order to estimate MCT according to Superpave volumetric mix design procedure, a temperature-viscosity relationship for the binder should be developed using ASTM D2493. This approach provides reasonable temperatures for unmodified binders which are Newtonian fluids at high temperatures and their viscosity is independent of shear rate. However, this method often yields excessively high temperatures for modified binders which exhibit non-Newtonian pseudoplastic behavior. The reason is that viscosity of modified binders depend on not only temperature but... 

    Comparison of the Effect of Controlled Annealing on Accumulative Roll Bonded 5083 Aluminum Alloy and AZ31 Magnesium Alloy Sheets

    , M.Sc. Thesis Sharif University of Technology Kalani, Amir Reza (Author) ; Akbarzadeh, Abbas (Supervisor)
    Abstract
    Lightweight aluminum and magnesium alloy sheets do not generally possess as much strength as steel sheets and their strength need to be increased by a suitable process such as Accumulative Roll Bonding (ARB). One of the most important limitations of ARB is the low ductility and formability of the sheets produced by this process. In the present research conducted on the 5083 aluminum and AZ31 magnesium alloy sheets efforts have beem made to overcome this limitation by heating up the sheets whether during metal forming process as hot deformation or as distinct controlled annealing process subsequent to the deformation, in order to develop the application domain of the sheets. Results... 

    Hot workability of ultrafine-grained aluminum alloy produced by severe plastic deformation of Al6063 powder and consolidation

    , Article Materials Science Forum, 21 March 2011 through 25 March 2011 ; Volume 667-669 , 2011 , Pages 979-984 ; 02555476 (ISSN) ; 9783037850077 (ISBN) Asgharzadeh, H ; Simchi, A ; Kim, H. S ; National Natural Science Foundation of China; The Ministry of Science and Technology of China; Chinese Academy of Sciences, Institute of Metal Research; Baoshan Iron and Steel Co., Ltd ; Sharif University of Technology
    2011
    Abstract
    Al6063 powder was subjected to severe plastic deformation via high-energy mechanical milling to prepare ultrafine-grained (UFG) aluminium alloy. Uniaxial compression test at various temperatures between 300 and 450 °C and strain rates between 0.01 and 1 s-1 was carried out to evaluate hot workability of the material. Microstructural studies were performed by EBSD and TEM. The average activation energy and strain rate sensitivity of the hot deformation process were determined to be 280 kJ mol-1 and 0.05, respectively. The deformation temperature and applied strain rate significantly affected the grain structure of UFG Al alloy. A finer grain structure was obtained at lower temperatures and... 

    Hot workability of a high carbon high chromium tool steel

    , Article Materials and Design ; Volume 46 , 2013 , Pages 654-659 ; 02641275 (ISSN) Akbarzadeh, A ; Naghdy, S ; Sharif University of Technology
    2013
    Abstract
    In this work, hot tension tests were conducted on as cast and wrought samples of a high carbon high chromium tool steel to study the hot workability under the rolling conditions. The flow curves illustrate the classical shape of dynamic recrystallization (DRX). It is observed that broken carbide nets in the wrought samples result in lower deformation activation energy 398. kJ/mol in comparison to the as cast samples 432. kJ/mol. Necking strains were calculated using the inflection point of the work-hardening (θ) vs. stress curves. Wrought samples show higher hot ductility and lower maximum stress than the as cast ones. It is shown that lower activation energy of deformation and lower stress... 

    Recycled ceramic waste high strength concrete containing wollastonite particles and micro-silica: A comprehensive experimental study

    , Article Construction and Building Materials ; Volume 201 , 2019 , Pages 11-32 ; 09500618 (ISSN) Zareei, S. A ; Ameri, F ; Shoaei, P ; Bahrami, N ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    This study investigated the effects of combined utilization of wollastonite particles and recycled waste ceramic aggregate (RWCA) on high strength concrete (HSC) properties. Two groups of mixtures were manufactured: 1) concrete mixtures in which cement was partially replaced with wollastonite at values ranging from 10% to 50%, and 2) mixtures in which wollastonite was used at the aforementioned dosages and 50% of natural coarse aggregate was replaced with RWCA. In addition, 10% of cement weight micro-silica was added to all mixtures. The concrete behavior in terms of strength, durability, resistance against acidic environment, and performance under elevated temperatures ranging from 20 °C to... 

    Effect of microstructure on rolling behavior of NiTi memory alloy

    , Article Materials and Manufacturing Processes ; Volume 23, Issue 7 , 26 August , 2008 , Pages 646-650 ; 10426914 (ISSN) Sadrnezhaad, S. K ; Badakhshan Raz, S ; Sharif University of Technology
    2008
    Abstract
    NiTi shape memory alloy (SMA) ingots were produced by vacuum induction melting/casting unit. The effect of microstructure on the hot (1000C) and cold (room temperature) rolling workability of cast samples was investigated. Microstructure of the cast samples was related to the type of crucible which used for melting and the average vacuum pressure of VIM furnace. Optical microscope, scanning electron microscope (SEM), and energy dispersive technology (EDS) methods were used to inspect the origins of observed cracks after rolling processes. The results showed that the formation of both Ti4Ni2O and TiC impurities formed due to inappropriate melting conditions had detrimental effects on... 

    A study on the hot workability of wrought NiTi shape memory alloy

    , Article Materials Science and Engineering A ; Volume 528, Issue 18 , July , 2011 , Pages 5656-5663 ; 09215093 (ISSN) Morakabati, M ; Kheirandish, S ; Aboutalebi, M ; Taheri, A. K ; Abbasi, S. M ; Sharif University of Technology
    2011
    Abstract
    The hot workability of a wrought 49.8 Ni-50.2 Ti (at pct) alloy was assessed using the hot compression tests in temperature range of 700-1000°C, strain rate of 0.001-1s-1, and the total strain of 0.7. The constitutive equations of Arrhenius-type hyperbolic-sine function was used to describe the flow stress as a function of strain rate and temperature. The preferable regions for hot workability of the alloy were achieved at Z (Zener-Holloman parameter) values of about 109-1013 corresponding to the peak efficiency of 20-30% in the processing map. However, a narrow area in the processing map including the deformation temperature of 1000°C and strain rate of 1s-1 is inconsistent with the related...