Loading...
Search for: wound-healing-assay
0.005 seconds

    Fabrication and evaluation of a bilayer hydrogel-electrospinning scaffold prepared by the freeze-gelation method

    , Article Journal of Biomechanics ; Volume 98 , 2020 Kamali, A ; Shamloo, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    This study presents a bilayer structure as a skin scaffold comprised of an electrospun sheet layer made of polycaprolactone and polyvinil alcohol and a porous hydrogel layer made of chitosan and gelatin. The hydrogel layer was fabricated by employing the freeze-gelation technique. The bilayer structure was achieved by pouring the hydrogel solution on the electrospun sheet at the bottom of a mold followed by the freeze-gelation technique to obtain a porous structure in the hydrogel. The hydrogel and hydrogel-electrospun samples were characterized by scanning electron microscopy, swelling, tensile strength, in vitro and in vivo analyses. From a mechanical strength standpoint, the combination... 

    Delivery of melittin-loaded niosomes for breast cancer treatment: an in vitro and in vivo evaluation of anti-cancer effect

    , Article Cancer Nanotechnology ; Volume 12, Issue 1 , 2021 ; 18686958 (ISSN) Dabbagh Moghaddam, F ; Akbarzadeh, I ; Marzbankia, E ; Farid, M ; khaledi, L ; Reihani, A. H ; Javidfar, M ; Mortazavi, P ; Sharif University of Technology
    BioMed Central Ltd  2021
    Abstract
    Background: Melittin, a peptide component of honey bee venom, is an appealing candidate for cancer therapy. In the current study, melittin, melittin-loaded niosome, and empty niosome had been optimized and the anticancer effect assessed in vitro on 4T1 and SKBR3 breast cell lines and in vivo on BALB/C inbred mice. "Thin-layer hydration method" was used for preparing the niosomes; different niosomal formulations of melittin were prepared and characterized in terms of morphology, size, polydispersity index, encapsulation efficiency, release kinetics, and stability. A niosome was formulated and loaded with melittin as a promising drug carrier system for chemotherapy of the breast cancer cells.... 

    Defining microRNA signatures of hair follicular stem and progenitor cells in healthy and androgenic alopecia patients

    , Article Journal of Dermatological Science ; Volume 101, Issue 1 , 2021 , Pages 49-57 ; 09231811 (ISSN) Mohammadi, P ; Nilforoushzadeh, M. A ; Youssef, K. K ; Sharifi Zarchi, A ; Moradi, S ; Khosravani, P ; Aghdami, R ; Taheri, P ; Hosseini Salekdeh, G ; Baharvand, H ; Aghdami, N ; Sharif University of Technology
    Elsevier Ireland Ltd  2021
    Abstract
    Background: The exact pathogenic mechanism causes hair miniaturization during androgenic alopecia (AGA) has not been delineated. Recent evidence has shown a role for non-coding regulatory RNAs, such as microRNAs (miRNAs), in skin and hair disease. There is no reported information about the role of miRNAs in hair epithelial cells of AGA. Objectives: To investigate the roles of miRNAs affecting AGA in normal and patient's epithelial hair cells. Methods: Normal follicular stem and progenitor cells, as well as follicular patient's stem cells, were sorted from hair follicles, and a miRNA q-PCR profiling to compare the expression of 748 miRNA (miRs) in sorted cells were performed. Further, we...