Loading...
Search for: wound-rotor-resolv
0.005 seconds

    Analytical Modelling and Optimization of Disk Type, Slot Less Resolver

    , M.Sc. Thesis Sharif University of Technology Moheyseni, Atefeh (Author) ; Nasiri Gheidari, Zahra (Supervisor)
    Abstract
    Resolvers, due to their robust structure, are widely used in automation systems. Among the types of resolvers, the accuracy of the Wound Rotor (WR) resolver in the occurrence of common mechanical errors is higher than other types of resolvers. therefore, in this thesis, an AFWRR is studied to improve the performance. Increasing the number of poles in WR resolvers is a good solution for increasing the accuracy of these electromagnetic position sensors. However, high-speed WR resolvers due to employing fractional slot windings suffer from rich sub-harmonics in the induced voltages. A common solution for suppressing the undesirable sub-harmonics is using multi-layer winding with appropriate... 

    Performance Improvement of Wound-rotor Axial Flux Resolver Considering the Effect of Physical Parameters

    , M.Sc. Thesis Sharif University of Technology Abolqasemi Kharanaq, Fatemeh (Author) ; Nasiri-Gheidari, Zahra (Supervisor)
    Abstract
    Today, position sensors are inseparable parts of engineering systems. Encoders and resolvers are the most common types of position sensors that are widely used in industries. Due to low price and high accuracy, encoders are the first choice of engineers. Yet, their performance deteriorates under harsh conditions, namely wide temperature range operation, intense vibration and polluted environments. On the contrary, resolvers are rigid and robust which make them resistant to polluted environments.According to principle of operation, resolvers are divided to two main types: variable reluctance (VR) and wound-rotor (WR). Researches has shown that wound rotor resolvers have better performance... 

    Electrical and Eccentricity Fault Diagnose in Wound Rotor Resolvers

    , M.Sc. Thesis Sharif University of Technology Lasjerdi, Hamed (Author) ; Nasiri Gheidari, Zahra (Supervisor) ; Totonchian, Farid (Co-Supervisor)
    Abstract
    Resolver is the recommended position sensor in harsh environments where there is wide temperature variation, vibration, and dust. Resolvers are divided into two groups: Wound-Rotor (WR) resolvers and Variable Reluctance (VR) ones. The most commercial resolvers are WR resolvers that they have 2-phase, orthogonal, signal windings on their stator and a single-phase excitation winding on their rotor. Due to the electromechanical structure of the resolver, the mechanical and electrical faults of electrical machines are expected in resolvers. Therefore, in this dissertation, the effect of mentioned faults in WR resolvers was investigated.In this dissertation, a non-invasive method with the help of... 

    Optimal Design and Prototyping of 2 Degree of Freedom Resolver

    , Ph.D. Dissertation Sharif University of Technology Zare, Fatemeh (Author) ; Nasiri Gheidai, Zahra (Supervisor)
    Abstract
    Position sensors are an inevitable part of motion control mechanisms with inverter-driven electric machines. Encoders and resolvers are two common types of position sensors. Resolvers are preferred over encoders due to their superior performance in polluted and noisy environments with wide temperature variation or high vibration. Conventional resolvers are synchronous generators whose excitation winding is fed by an AC instead of a DC voltage. There are different types of resolvers for determining position in linear or rotational motions. However, increasing usage of two-degree of freedom (2-DOF) motors for simultaneous rotational and linear motion leads to request for helical motion... 

    Determining the Optimal Excitation Signal in order to Performance Improvement of Resolver

    , M.Sc. Thesis Sharif University of Technology Farhadi Beyranvand, Ali (Author) ; Nasiri Gheidari, Zahra (Supervisor) ; Tootoonchian, Farid (Supervisor)
    Abstract
    The need for position sensors has increased substantially with the development of electric vehicle motion control systems. In industrial applications, encoders are commonly used for positioning, but in polluted industrial environments, with large temperature variation and vibration, the resolver is preferred to optical encoder. Resolver is a two-phase synchronous generator with a high frequency AC excitation voltage instead of DC voltage. Therefore, the output voltages of the resolver are amplitude modulated (AM) voltages which in order to determine the output position, it is necessary to extract the envelope of these signals using R/D converter. In envelope extraction methods, to ensure... 

    Simplification of integrated multi-turn wound-rotor resolvers' manufacturing

    , Article IEEE Sensors Journal ; Volume 20, Issue 23 , 2020 , Pages 14141-14147 Hajmohammadi, S ; Tootoonchian, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    Employing Multi-Turn Wound-Rotor (WR) resolvers are suggested for applications that high accuracy and absolute measurement are required, simultaneously. Conventional multi-turn resolvers are consisted of two individual resolvers in a common frame and suffer from high cost and big size that has a loading effect on the driven machine. Those challenges are over-come in proposed structures of recent researches in the price of a complicated winding process in manufacturing where the aim of this paper is laying. To find the best solution, an index is proposed and calculated. All the simulations are done using time-stepping finite element analysis (TSFEA). Then, the prototype of the optimal... 

    Design and Prototyping of an Axial Flux Resolver for Reduction of Estimated Position Error

    , Ph.D. Dissertation Sharif University of Technology Alipour-Sarabi, Ramin (Author) ; Oraee Mirzamani, Hashem (Supervisor) ; Nasiri-Gheidari, Zahra (Supervisor)
    Abstract
    Providing a precise estimation of the position of a moving element is one of the requirements of many position control systems. Resolvers, as electromagnetic sensors, are one of the most suitable options for use in harsh environments with high thermal and mechanical stresses and high contamination. Although resolvers are the most reliable solution for sensitive applications in stressful environments, they are less accurate in normal operating conditions than optical encoders. In this regard, many efforts have been made to reduce the estimated position. Most of the studies have focused on modifying the electronic converter structure, which is responsible for processing the output signals of... 

    Determining the Optimal Excitation Signal in order to Performance Improvement of Resolver

    , M.Sc. Thesis Sharif University of Technology Farhadi Beyranvand, Ali (Author) ; Nasiri Gheidari, Zahra (Supervisor) ; Tootoonchian, Farid (Supervisor)
    Abstract
    The need for position sensors has increased substantially with the development of electric vehicle motion control systems. In industrial applications, encoders are commonly used for positioning, but in polluted industrial environments, with large temperature variation and vibration, the resolver is preferred to optical encoder. Resolver is a two-phase synchronous generator with a high frequency AC excitation voltage instead of DC voltage. Therefore, the output voltages of the resolver are amplitude modulated (AM) voltages which in order to determine the output position, it is necessary to extract the envelope of these signals using R/D converter. In envelope extraction methods, to ensure... 

    Helical motion wound-rotor resolver

    , Article IEEE Sensors Journal ; Volume 22, Issue 10 , 2022 , Pages 9371-9377 ; 1530437X (ISSN) Zare, F ; Nasiri Gheidari, Z ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    In this paper an integrated core, high reliability, linear-rotational resolver with a simple slotless configuration is proposed. The moving part of the proposed resolver has only one helical winding. While, its stator needs at least two individual windings to be able to determine the linear and angular position in simultaneous linear and rotational, helical, motions. Three different configurations are proposed for the stator's windings: (1) helical and horizontally skewed winding (2) helical and vertically skewed winding (3) horizontally and vertically skewed windings. The influence of the mentioned configurations is discussed in the terms of sensor's accuracy in independent and simultaneous... 

    Optimal design and performance analysis of a double-sided multiturn wound-rotor resolver

    , Article IEEE/ASME Transactions on Mechatronics ; Volume 27, Issue 1 , 2022 , Pages 493-500 ; 10834435 (ISSN) Hajmohammadi, S ; Saneie, H ; Nasiri Gheidari, Z ; Tootoonchian, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    Multispeed resolvers are used in the applications that need higher accuracy. However, they suffer from losing absolute position information. To overcome this challenge and improve the reliability of detecting position, the use of multiturn resolvers is recommended. The conventional configuration of multiturn resolver is using two individual resolvers on one shaft and into a common frame. Using such configuration needs special care on setting the distance between two resolvers. In this article, a new structure based on a dual side configuration is proposed. The performance of the double-sided resolver is analyzed and optimized using an analytical model based on a magnetic equivalent circuit.... 

    Winding function model for predicting performance of 2-DOF wound rotor resolver

    , Article IEEE Transactions on Transportation Electrification ; Volume 8, Issue 2 , 2022 , Pages 2062-2069 ; 23327782 (ISSN) Zare, F ; Nasiri Gheidari, Z ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    Two-degree-of-freedom (2-DOF) electrical machines require position sensors for their motion control. In comparison with using two independent sensors, using a 2-DOF sensor enhances the closed-loop control system's performance. However, due to the 3-D structure of the 2-DOF sensor, its performance evaluation needs 3-D analysis. Also, due to helical motion the accuracy deterioration of the sensor, under mechanical faults needs more attention. Although the finite element method (FEM) is the best way to simulate such sensors, most of the commercial packages for transient finite element simulations are not able to consider two separate motions simultaneously. Furthermore, FEM has a high...