Loading...
Search for: yield-strength
0.012 seconds

    A new model for inverse Hall-Petch relation of nanocrystalline materials

    , Article Journal of Materials Engineering and Performance ; Volume 17, Issue 5 , 2008 , Pages 662-666 ; 10599495 (ISSN) Shafiei Mohammadabadi, A ; Dehghani, K ; Sharif University of Technology
    2008
    Abstract
    In the present article, a new model for inverse Hall-Petch relation in nanocrystalline materials has been proposed. It is assumed that lattice distortion along grain boundaries can cause internal stresses and high internal stresses along grain boundaries can promote the grain boundary yielding. The designed model was then verified using the nanocrystalline-copper data. The minimum grain size for inverse Hall-Petch relation is determined to be about 11 nm for Cu. © 2008 ASM International  

    Processing Thin Magnesium Tubes by TCAP Process with Trapezoidal Geometry and Fabrication of Magnesium Microtubes with a Novel Method

    , M.Sc. Thesis Sharif University of Technology Kamran Masouleh, Mohsen (Author) ; Assempour, Ahmad (Supervisor)
    Abstract
    Due to compability of Magnesium with the body, it is a suitable material for making biodegradable stents, Althogh, its mechanical properties are not desirable for stent application. Accordingly, lately, magnesium’s microstructure and mechanical properties have been improved using various methods, including the process of severe plastic deformation (SPD). Many severe plastic deformation methods have been introduced for the fabrication of ultrafine grain tubes till now, which the process of tubular channel angular pressing (TCAP) is the most effective one. In the first part of the research, Magnesium tubes with a thickness of 1 mm were processed using the TCAP with a trapezoidal channel, and... 

    Mechanical and microstructural investigation of friction stir processed Al1100

    , Article Welding in the World ; Volume 53, Issue SPECIAL ISSUE , 2009 , Pages 253-258 ; 00432288 (ISSN) Nasiri, A. M ; Pouraliakbar, H ; Nikravesh, M ; Kokabi, A. H ; Sharif University of Technology
    Abstract
    Surfaces of cast 1100 aluminum were treated by multi-pass friction stir processing (MP-FSP), which is a solid-state microstructural modification technique using frictional heat and stirring action. An improvement in the mechanical properties was accomplished due to the microstructural modification and reduction of porosities. The yield strengths of the MP-FSPed specimens were significantly increased to about 1.4 times versus that of the base metal. The elongation of MP-FSP sample is about 30% higher than that of the base metal. Also the ultimate tensile strength and hardness of MP-FSPed specimens are improved. Moreover the effect of tool rotation rate and tool travel speed on the mechanical... 

    The effects of intermediate and post-annealing phenomena on the mechanical properties and microstructure of constrained groove pressed copper sheet

    , Article Materials Science and Engineering A ; Volume 515, Issue 1-2 , 2009 , Pages 162-168 ; 09215093 (ISSN) Rafizadeh, E ; Mani, A ; Kazeminezhad, M ; Sharif University of Technology
    2009
    Abstract
    Commercial purity copper sheets were subjected to a severe plastic deformation technique known as constrained groove pressing (CGP). The effect of pass number, intermediate and post-annealing on the yield strength, hardness and final microstructure of the copper specimens were investigated. The initial pass increases the strength much more than the subsequent passes. Intermediate and post-annealing up to 300 °C cannot change the mechanical properties significantly and even in some cases improve the strength and hardness while reduce the hardness inhomogeneity. Microstructure after post-annealing at elevated temperatures shows abnormal grain growth. © 2009 Elsevier B.V. All rights reserved  

    Optimization of mechanical properties of a micro alloyed steel

    , Article Materials and Design ; Volume 30, Issue 6 , 2009 , Pages 2167-2172 ; 02641275 (ISSN) Rasouli, D ; KhamenehAsl, Sh ; Akbarzadeh, A ; Daneshi, G. H ; Sharif University of Technology
    2009
    Abstract
    In this work, the effect of hot deformation temperature on microstructure and mechanical properties of micro alloyed steel was studied. The results indicated that by decreasing the deformation temperature final microstructure is refined and the volume fraction of grain boundary ferrite is increased and some pearlite is produced. Therefore both the yield strength and ultimate tensile strength is increased, while the toughness is preserved in comparison to a ferritic-pearlitic microstructure. Also a model was developed to relate the deformation condition to the volume fraction of acicular ferrite at mixed microstructure. © 2008 Elsevier Ltd. All rights reserved  

    Poly (vinyl alcohol)/graphene oxide nanocomposite films and hydrogels prepared by gamma ray

    , Article Plastics, Rubber and Composites ; Volume 48, Issue 2 , 2019 , Pages 42-47 ; 14658011 (ISSN) Frounchi, M ; Dadbin, S ; Tabatabaei, M ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    Poly (vinyl alcohol)/graphene oxide (PVA/GO) gamma irradiated nanocomposite films and hydrogels were prepared. In composite films, GO was initially irradiated by gamma ray in order to improve interactions between GO and PVA. The film containing 1 wt-% GO was very strong where tensile modulus and tensile yield strength were 45 and 115% higher than those of pure PVA. In the second set of experiments PVA/GO hydrogels were made by irradiating PVA/GO suspensions by gamma ray at various doses. It was an interesting finding that GO increased the gel portion of hydrogels through contribution of H-bonds between PVA and GO. The hydrogels prepared at 20 kGy had remarkable water swelling ratio that... 

    Effect of high energy ball milling on compressibility of nanostructured composite powder

    , Article Powder Metallurgy ; Volume 54, Issue 1 , Nov , 2011 , Pages 24-29 ; 00325899 (ISSN) Abdoli, H ; Farnoush, H. R ; Asgharzadeh, H ; Sadrnezhaad, S. K ; Sharif University of Technology
    2011
    Abstract
    Compressibility of a nanostructured Al-5AlN composite powder synthesised via high energy ball milling for various times was studied by means of a modified Heckel equation. Since workhardening and morphological changes take place by milling evolution, the compressibility was consequently affected. Strengthening of composite compacts was influenced by milling and compaction processes, i.e. strength of compacts increased at longer milling times and higher compaction pressures. It was found that, at the initial stages of milling and higher compaction pressures, the strengthening was mostly affected from compaction process, whereas the milling strengthening fraction was near to unity at lower... 

    Compressive behavior of concrete actively confined by metal strips, part B: Analysis

    , Article Materials and Structures/Materiaux et Constructions ; Volume 43, Issue 10 , 2010 , Pages 1383-1396 ; 13595997 (ISSN) Moghaddam, H ; Samadi, M ; Pilakoutas, K ; Sharif University of Technology
    2010
    Abstract
    This paper presents analytical part of an investigation on the application of prestressed strips for concrete confinement. In this paper, an analytical model is proposed to predict the compressive stress-strain curve of strapped concrete as a function of the confinement level. The model was calibrated based on the experimental data of compressive tests which were described in part A of this paper. Various parameters are considered in the proposed model including volumetric ratio, yield strength and ultimate strain of confining material, shape of cross section, strength of plain concrete. Three key points were defined on the stress-stress curve of strapped concrete columns and applied in... 

    The simultaneous effect of silica nanoparticles and rubber particles on the toughness of epoxy polymer

    , Article International Journal of Nanomanufacturing ; Volume 5, Issue 3-4 , 2010 , Pages 232-244 ; 17469392 (ISSN) Shayegan, M ; Bagheri, R ; Sharif University of Technology
    2010
    Abstract
    The objective of this study is to investigate the effects of both rubbery phase and nanosilica on mechanical properties of epoxy. Three series of formulations based on epoxy including nanosilica, rubber and rubber/nanosilica were prepared. Transmission electron microscopy showed that nanoparticles were homogeneously dispersed throughout the epoxy matrix. Compression and fracture toughness tests along with scanning electron microscopy and transmission optical microscopy were also done to evaluate the properties of the compounds. Although the results of compression tests indicate that addition of nanosilica could not change elastic modulus and yield strength of neat resin significantly,... 

    Flow stress dependence on the grain size in alumina dispersion-strengthened copper with a bimodal grain size distribution

    , Article Materials Science and Engineering A ; Volume 518, Issue 1-2 , 2009 , Pages 41-46 ; 09215093 (ISSN) Afshar, A ; Simchi, A ; Sharif University of Technology
    2009
    Abstract
    The grain size dependence of flow stress in Cu-2.7 vol.%Al2O3 (15 nm) composite with a bimodal structure was studied. It is shown that the yield strength obeys the Hall-Petch equation when an appropriate value of average grain size based on the "rule of mixture" is employed. The Hall-Petch constants (σ0ε and kε) are proportional to strain as ε0.5. An equation for flow stress as a function of true strain and average grain size is proposed. The effect of alumina nanoparticles on the yield strength is shown to be related to large amounts of dislocations density. © 2009 Elsevier B.V. All rights reserved  

    Anomalous fracture behavior in an epoxy-based hybrid composite

    , Article Materials Science and Engineering A ; Volume 515, Issue 1-2 , 2009 , Pages 49-58 ; 09215093 (ISSN) Marouf, B. T ; Pearson, R. A ; Bagheri, R ; Sharif University of Technology
    2009
    Abstract
    In this investigation, core-shell rubber particles and organically modified clay were added to an epoxy resin and the changes in mechanical behavior were studied. As expected, the yield strength of the organoclay-filled epoxies increased modestly with increasing clay content and the yield strength of the rubber-modified compounds decreased with rubber content. Interestingly, the compressive yield strength of epoxy resins containing both rubber particles and organoclay (a.k.a. hybrid nanocomposites) was found to be independent on organoclay content (up to 5 phr). The fracture toughness of organoclay-filled epoxies increased modestly with clay content and, as expected, the increases in... 

    Evaluation of the geo-mechanical parameters of the interface between asphalt concrete and sand with applying direct shear test and numerical modeling

    , Article Advanced Materials Research ; Volume 587 , 2012 , Pages 116-121 ; 10226680 (ISSN) ; 9783037855133 (ISBN) Tajdini, M ; Rostami, A ; Karimi, M. M ; Taherkhani, H
    2012
    Abstract
    Asphaltic concrete has been used as waterproofing core in embankment dams, since 1948. In this application, the asphaltic core is surrounded by granular filter materials. The interaction of the asphaltic concrete and the granular materials has not been sufficiently investigated. In this paper the mechanical behavior of the interface between a natural smooth sand filter and asphaltic concrete at different levels of normal stresses and a constant shear strain rate has been studied. Small scale direct shear test has been conducted in this study, in which the shear surface is considered as the interface. Asphalt concrete specimens used in the shear test were cut in square shape (10×10×2.5 cm)... 

    Hot deformation of ultrafine-grained Al6063/Al2O3 nanocomposites

    , Article Journal of Materials Science ; Volume 46, Issue 14 , July , 2011 , Pages 4994-5001 ; 00222461 (ISSN) Asgharzadeh, H ; Simchi, A ; Kim, H. S ; Sharif University of Technology
    2011
    Abstract
    Ultrafine-grained (UFG) Al6063 alloy reinforced with 0.8 vol% nanometric alumina particles (25 nm) was prepared by reactive mechanical alloying and direct powder extrusion. Transmission electron microscopy and electron backscatter diffraction analysis showed that the grain structure of the nanocomposite composed of nanosize grains (<0.1 μm), ultrafine grains (0.1-1 μm) and micronsize grains (>1 μm) with random orientations. Mechanical properties of the material were examined at room and high temperatures by compression test. It was found that the yield strength of the UFG composite material is mainly controlled by the Orowan mechanism rather than the grain boundaries. The deformation... 

    Investigation of the nanostructure and mechanical properties of polypropylene/polyamide 6/layered silicate ternary nanocomposites

    , Article Materials and Design ; Volume 31, Issue 4 , April , 2010 , Pages 1776-1784 ; 02641275 (ISSN) Motamedi, P ; Bagheri, R ; Sharif University of Technology
    2010
    Abstract
    This work aims to investigate the structure-property relationship in ternary nanocomposites consisting of polypropylene as the matrix, nanoclay as the reinforcement and polyamide 6 as the intermediate phase. In this regard, composites of polypropylene/organoclay, polyamide/organoclay, blends of polypropylene/polyamide, and ternary nanocomposites of polypropylene/polyamide/layered silicate with and without compatibilizer were produced via melt compounding. Nanostructure was investigated by wide-angle X-ray diffraction and transmission electron microscopy. Scanning electron microscopy was employed to study the microstructure. Modulus of elasticity and yield strength were measured by uniaxial... 

    Microstructure and mechanical properties of oxide-dispersion strengthened al6063 alloy with ultra-fine grain structure

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Volume 42, Issue 3 , 2011 , Pages 816-824 ; 10735623 (ISSN) Asgharzadeh, H ; Simchi, A ; Kim, H. S ; Sharif University of Technology
    Abstract
    The microstructure and mechanical properties of the ultra-fine grained (UFG) Al6063 alloy reinforced with nanometric aluminum oxide nanoparticles (25 nm) were investigated and compared with the coarse-grained (CG) Al6063 alloy (∼2 μm). The UFG materials were prepared by mechanical alloying (MA) under high-purity Ar and Ar-5 vol pct O2 atmospheres followed by hot powder extrusion (HPE). The CG alloy was produced by HPE of the gas-atomized Al6063 powder without applying MA. Electron backscatter diffraction under scanning electron microscopy together with transmission electron microscopy studies revealed that the microstructure of the milled powders after HPE consisted of ultra-fine grains...