Loading...
Search for: zero-dimensional
0.006 seconds

    On the cayley graph of a commutative ring with respect to its zero-divisors

    , Article Communications in Algebra ; Volume 44, Issue 4 , 2016 , Pages 1443-1459 ; 00927872 (ISSN) Aalipour, G ; Akbari, S ; Sharif University of Technology
    Taylor and Francis Inc 
    Abstract
    Let R be a commutative ring with unity and R+ and Z*(R) be the additive group and the set of all nonzero zero-divisors of R, respectively. We denote by ℂ𝔸𝕐(R) the Cayley graph Cay(R+, Z*(R)). In this article, we study ℂ𝔸𝕐(R). Among other results, it is shown that for every zero-dimensional nonlocal ring R, ℂ𝔸𝕐(R) is a connected graph of diameter 2. Moreover, for a finite ring R, we obtain the vertex connectivity and the edge connectivity of ℂ𝔸𝕐(R). As a result, ℂ𝔸𝕐(R) gives an algebraic construction for vertex transitive graphs of maximum connectivity. In addition, we characterize all zero-dimensional semilocal... 

    Design and Fabrication Bi-fuel Gas Turbine Combustion Chamber Basis of Turbocharger

    , M.Sc. Thesis Sharif University of Technology Azari Barzandigh, Fariborz (Author) ; Farshchi, Mohammad (Supervisor) ; Hajilouy Benisi, Ali (Co-Advisor)
    Abstract
    This research is done as a continuation of previous efforts to develop a turbojet engine from a turbocharger at departments of mechanical and aerospace engineering of Sharif University of Technology and describes the necessary steps in order to design and build a dual fuel combustion chamber for a small, turbocharger based turbojet engine. At first, zero-dimensional analysis is done using a code written in Matlab. Using this code, matching of the compressor and turbine in the turbojet thermodynamic cycle is verified and the operating line of the turbojet engine has been extracted. Henceforth, operating conditions of the combustion chamber to start design process is determined. In designing... 

    Sensitivity analysis of gas turbine fuel consumption with respect to turbine stage efficiency

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Volume 1 , 2012 , Pages 419-423 ; 9780791845172 (ISBN) Zeinalpour, M ; Mazaheri, K ; Irannejad, A ; Sharif University of Technology
    2012
    Abstract
    In this paper, the effect of turbine stage efficiency on fuel consumption of both gas turbines and aerial engines is assessed quantitatively. At the beginning of the gas generator optimization to decrease the fuel consumption, it is necessary to analyze the sensitivity of fuel consumption to its main components efficiencies. This will guide us which component is more important to be optimized. Here a zero-dimensional analysis has been done to determine the effect of turbine stage efficiency on the fuel consumption. Results of this analysis are evaluated in the context of thermodynamic cycle of a gas turbine generator and an aerial engine. As an example, it is shown that if the efficiency of... 

    Modeling of Turbojet Propulsion Performance and Experimental Validation

    , Ph.D. Dissertation Sharif University of Technology Pourfarzaneh, Hossein (Author) ; Hajilouy Benisi, Ali (Supervisor) ; Farshchi, Mohammad (Supervisor)
    Abstract
    The propulsion system plays a significant role in determining of mission and flight regime of an air craft. This system, provides the propulsion force for an air craft. A comprehensive model based on the specifications of gas turbine cycle, with acceptable accuracy, is necessary for quick estimating of the engine performance in different phases of design and development of a propulsion system. The structure and performance of the turbojet engine is elaborated in this project and the previous researches and their simulating methods of the turbojet engine are reviewed. The research plan is justified by explanation of the project’s objects and its assumptions. Then, the zero-dimensional... 

    NO x formation in H 2-CH 4 blended flame under MILD conditions

    , Article Combustion Science and Technology ; Volume 184, Issue 7-8 , Aug , 2012 , Pages 995-1010 ; 00102202 (ISSN) Mardani, A ; Tabejamaat, S ; Sharif University of Technology
    2012
    Abstract
    In this article, NO production mechanisms for CH 4-H 2 combustion under MILD (moderate or intense low-oxygen dilution) conditions are studied using CDF and also zero-dimensional well stirred reactor (WSR) analysis. A H 2/CH 4 jet into a heated and diluted coflow is modeled in CFD analysis. The RANS equations with modified k equations are solved in an axisymmetric 2D computational domain. The GRI2.11 full mechanism is considered to represent the chemical reactions. The effects of oxidizer oxygen concentration, fuel hydrogen content, and fuel jet Reynolds number are studied on NO formation reactions. Results show that the measurements are predicted with an acceptable accuracy. The NNH and N 2O... 

    Numerical study of oxy-fuel MILD (moderate or intense low-oxygen dilution combustion) combustion for CH4-H2 fuel

    , Article Energy ; Volume 99 , 2016 , Pages 136-151 ; 03605442 (ISSN) Mardani, A ; Fazlollahi Ghomshi, A ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    This paper demonstrates a numerical study on the combination of Oxy-Fuel and MILD (moderate or intense low-oxygen dilution combustion) combustions, i.e. OXY-MILD. The N2 of a hot oxidizer was replaced with CO2 and H2O in a MILD combustion test case. The study was conducted using a CFD analysis, a zero-dimensional well-stirred reactor analysis, and a reactors network analysis. In the CFD analysis, RANS equations with modified k-ε equations were solved for a 2D-axisymmetric computational domain. Results showed a decrease in temperature gradient, reaction rate, and Damköhler number under the OXY-MILD condition in comparison with the MILD one. It seems the higher the oxygen level in the... 

    Harmful algal blooms (red tide): a review of causes, impacts and approaches to monitoring and prediction

    , Article International Journal of Environmental Science and Technology ; Volume 16, Issue 3 , 2019 , Pages 1789-1806 ; 17351472 (ISSN) Zohdi, E ; Abbaspour, M ; Sharif University of Technology
    Center for Environmental and Energy Research and Studies  2019
    Abstract
    Red tide, an impermanent natural phenomenon including harmful algal blooms, causes changing the color of the sea generally to red or almost brown, and has a serious impact on environment along the coast and aquatic ecosystem. Due to recent extensive steady harmful algal blooms events that cause adverse impacts on human healthsome, aquaculture and tourism industry, and the entire economy of the coastal region, the need of society for realizing these phenomena is much greater than the past. In the recent decades, consideration of algal blooms and determination of bloom-former species and fundamental researches about dynamics of blooms are increased worldwide. Development in technology has... 

    Recent advances in the modification of carbon-based quantum dots for biomedical applications

    , Article Materials Science and Engineering C ; Volume 120 , 2021 ; 09284931 (ISSN) Alaghmandfard, A ; Sedighi, O ; Tabatabaei Rezaei, N ; Abedini, A. A ; Malek Khachatourian, A ; Toprak, M. S ; Seifalian, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Carbon-based quantum dots (CDs) are mainly divided into two sub-groups; carbon quantum dots (CQDs) and graphene quantum dots (GQDs), which exhibit outstanding photoluminescence (PL) properties, low toxicity, superior biocompatibility and facile functionalization. Regarding these features, they have been promising candidates for biomedical science and engineering applications. In this work, we reviewed the efforts made to modify these zero-dimensional nano-materials to obtain the best properties for bio-imaging, drug and gene delivery, cancer therapy, and bio-sensor applications. Five main surface modification techniques with outstanding results are investigated, including doping, surface... 

    Recent advances in the modification of carbon-based quantum dots for biomedical applications

    , Article Materials Science and Engineering C ; Volume 120 , 2021 ; 09284931 (ISSN) Alaghmandfard, A ; Sedighi, O ; Tabatabaei Rezaei, N ; Abedini, A. A ; Malek Khachatourian, A ; Toprak, M. S ; Seifalian, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Carbon-based quantum dots (CDs) are mainly divided into two sub-groups; carbon quantum dots (CQDs) and graphene quantum dots (GQDs), which exhibit outstanding photoluminescence (PL) properties, low toxicity, superior biocompatibility and facile functionalization. Regarding these features, they have been promising candidates for biomedical science and engineering applications. In this work, we reviewed the efforts made to modify these zero-dimensional nano-materials to obtain the best properties for bio-imaging, drug and gene delivery, cancer therapy, and bio-sensor applications. Five main surface modification techniques with outstanding results are investigated, including doping, surface... 

    A comprehensive review on planar boron nitride nanomaterials: From 2D nanosheets towards 0D quantum dots

    , Article Progress in Materials Science ; Volume 124 , 2022 ; 00796425 (ISSN) Angizi, S ; Alem, S. A. A ; Hasanzadeh Azar, M ; Shayeganfar, F ; Manning, M. I ; Hatamie, A ; Pakdel, A ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Moving from two-dimensional hexagonal boron nitride (2D h-BN) flatlands towards their quantum sized zero-dimensional (0D) islands, as the newest member of the h-BN family, has recently opened up novel research areas due to the emergence of unique optical and physicochemical properties, excellent thermal and chemical stability, and desirable biocompatibility. This review elaborates on the fundamental properties of 2D and 0D h-BN nanomaterials and covers the latest progress in the fabrication and applications of BN nanosheets (BNNSs) and quantum dots (BNQDs). Initially, the transformation of properties in h-BN nanomaterials is discussed when moving from the 2D realm towards the 0D quantum... 

    Improvement and experimental validation of a multi-zone model for combustion and NO emissions in CNG fueled spark ignition engine

    , Article Journal of Mechanical Science and Technology ; Volume 26, Issue 4 , 2012 , Pages 1205-1212 ; 1738494X (ISSN) Asgari, O ; Hannani, S. K ; Ebrahimi, R ; Sharif University of Technology
    2012
    Abstract
    This article reports the experimental and theoretical results for a spark ignition engine working with compressed natural gas as a fuel. The theoretical part of this work uses a zero-dimensional, multi-zone combustion model in order to predict nitric oxide (NO) emission in a spark ignition (SI) engine. The basic concept of the model is the division of the burned gas into several distinct zones for taking into account the temperature stratification of the burned mixture during combustion. This is especially important for accurate NO emissions predictions, since NO formation is strongly temperature dependent. During combustion, 12 products are obtained by chemical equilibrium via Gibbs energy...