Loading...
Search for: zmp
0.005 seconds

    An open loop walking on different slopes for NAO humanoid robot

    , Article Procedia Engineering ; Volume 41 , 2012 , Pages 296-304 ; 18777058 (ISSN) Massah, B. A ; Sharifi, K. A ; Salehinia, Y ; Najafi, F ; Sharif University of Technology
    2012
    Abstract
    Dynamic gait planning for humanoid robots encounters difficulties such as stability, speed, and smoothness. In most of previous studies, joints' trajectories are calculated in 3D Cartesian space, then, introducing boundary conditions and using polynomials, the first and second derivatives of the motion are ensured to be continuous. Then, the stability of the motion is guaranteed using Zero Moment Point (ZMP) stability criterion. In this study, a trajectory planner is presented using the semi-ellipse equations of the motion; the continuity of the derivatives is preserved. Stabilization of motion is attained through using ZMP criterion and 3d inverted pendulum equations in three slope... 

    Mechanical and Control System Design Enhancements for Stability and Safety of WMR Systems Against Environmental Disturbances

    , M.Sc. Thesis Sharif University of Technology Tahami, Reza (Author) ; Vosoughi, Gholamreza (Supervisor) ; Meghdari, Ali (Supervisor)
    Abstract
    Hospitals are considered to be environments for employing social robots. However, it is necessary to provide conditions for the operation of these robots in such environment. Factors such as slippery and sloping surfaces, as well as the risk of falling robots from impact by the patient or other factors, cause the performance of these robots in these environments to be difficult. Friction and slip is a challenge posed by the path tracking mission in the hospital environment for these robots. In this regard, one of the objectives of this project is robot control to track the path on the surfaces in the event of a slip. The robot studied in this project is omnidirectional robot including... 

    Optimal stair climbing pattern generation for humanoids using virtual slope and distributed mass model

    , Article Journal of Intelligent and Robotic Systems: Theory and Applications ; Volume 94, Issue 1 , 2019 , Pages 43-59 ; 09210296 (ISSN) Shahrokhshahi, A ; Yousefi Koma, A ; Khadiv, M ; Mansouri, S ; Mohtasebi, S. S ; Sharif University of Technology
    Springer Netherlands  2019
    Abstract
    This study addresses optimal walking pattern generation for SURENA III humanoid robot in a stair-climbing scenario. To this end, the kinematic configuration of the 31-DOF humanoid robot is studied. Integrating the detailed dynamic properties of the robot, a comprehensive and precise dynamic model is developed for its lower-limb. In order to generate the optimal walking pattern for the considered humanoid robot, trajectories for feet and pelvis are first designed, and then joint angles are derived by means of inverse kinematics. Such a complete model provides the designer with the necessary tools to optimize the trajectory generation. Using two different types of objective functions, namely... 

    Neural control of a fully actuated biped robot

    , Article 2006 IEEE International Conference on Robotics and Biomimetics, ROBIO 2006, Kunming, 17 December 2006 through 20 December 2006 ; 2006 , Pages 1299-1304 ; 1424405718 (ISBN); 9781424405718 (ISBN) Sadati, N ; Hamed, K. A ; Sharif University of Technology
    2006
    Abstract
    According to the fact that humans and animals show marvelous abilities in walking on irregular terrain, there is a strong need for adaptive algorithms in walking of biped robots to behave like them. Since the stance leg can easily rise from the ground and it can easily rotate about the toe or the heel, the problem of controlling the biped robots is difficult. In this paper, according to the adaptive locomotion patterns of animals, coordination and control of body links have been done with Central Pattern Generator (CPG) in spinal cord and feedback network from musculoskeletal system. A one layer feedforward neural network that its inputs are the scaled joint variables and the touch sensors...