Loading...

Design and fabrication of an electrochemical aptasensor using Au nanoparticles/carbon nanoparticles/cellulose nanofibers nanocomposite for rapid and sensitive detection of Staphylococcus aureus

Ranjbar, S ; Sharif University of Technology | 2018

3527 Viewed
  1. Type of Document: Article
  2. DOI: 10.1016/j.bioelechem.2018.04.018
  3. Publisher: Elsevier B.V , 2018
  4. Abstract:
  5. Since that pathogenic bacteria are major threats to human health, this paper describes the fabrication of an effective and durable sensing platform based on gold nanoparticles/carbon nanoparticles/cellulose nanofibers nanocomposite (AuNPs/CNPs/CNFs) at the surface of glassy carbon electrode for sensitive and selective detection of Staphylococcus aureus (S. aureus). The AuNPs/CNPs/CNFs nanocomposite with the high surface area, excellent conductivity, and good biocompatibility was used for self-assembled of the thiolated specific S. aureus aptamer as a sensing element. The surface morphology of AuNPs/CNPs/CNFs nanocomposite was characterized with field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), dynamic light scattering (DLS) and ultraviolet-visible (UV–Vis) spectrophotometric methods. Each aptasensor modification step was monitored with cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. The fabricated aptasensor exhibited a wide linear dynamic range (1.2 × 101 to 1.2 × 108) CFU mL−1 with a LOD of 1 CFU mL−1 and was be capable to accurate detection and determination of Staphylococcus aureus in human blood serum as a clinical sample with a complex matrix. © 2018 Elsevier B.V
  6. Keywords:
  7. Au nanoparticles ; Carbon nanoparticles ; Cellulose nanofibers ; Electrochemical aptasensor ; Nanocomposite ; Staphylococcus aureus ; Bacteria ; Biocompatibility ; Cyclic voltammetry ; Dynamic light scattering ; Electrochemical impedance spectroscopy ; Electron energy loss spectroscopy ; Energy dispersive spectroscopy ; Fabrication ; Field emission microscopes ; Glass membrane electrodes ; Health risks ; Nanocellulose ; Nanofibers ; Nanoparticles ; Scanning electron microscopy ; Spectrophotometry ; Carbon Nano-Particles ; Energy dispersive spectroscopies (EDS) ; Field emission scanning electron microscopy ; Glassy carbon electrodes ; Linear dynamic ranges ; Spectro-photometric method ; Gold nanoparticles ; Aptamer ; Carbon nanoparticle ; Gold nanoparticle ; Graphene oxide ; Single walled nanotube ; Metal nanoparticle ; Nanofiber ; Article ; Bacterial virulence ; Bacterium detection ; Blood analysis ; Colony forming unit ; Controlled study ; Cyclic potentiometry ; Differential pulse voltammetry ; Electrochemical detection ; Energy dispersive X ray spectroscopy ; Escherichia coli O157 ; Human ; Impedance ; Impedance spectroscopy ; Measurement repeatability ; Nanofabrication ; Nonhuman ; Photon correlation spectroscopy ; Potentiometry ; Process optimization ; Reproducibility ; Salmonella enterica serovar Typhimurium ; Sensitivity and specificity ; Shigella flexneri ; Staphylococcus aureus ; Surface property ; Ultraviolet visible spectrophotometry ; Blood ; Chemistry ; Electrochemical analysis ; Evaluation study ; Genetic procedures ; Isolation and purification ; Microbiology ; Procedures ; Staphylococcus infection ; Area ; Carbon ; Detection ; Scanning Electron Microscopy ; Spectroscopy ; Aptamers, Nucleotide ; Biosensing Techniques ; Cellulose ; Electrochemical Techniques ; Gold ; Humans ; Limit of Detection ; Metal Nanoparticles ; Nanocomposites ; Staphylococcal Infections
  8. Source: Bioelectrochemistry ; Volume 123 , 2018 , Pages 70-76 ; 15675394 (ISSN)
  9. URL: https://www.sciencedirect.com/science/article/abs/pii/S1567539418300616