Loading...

Experimental investigation on freeze-thaw durability of polymer concrete

Jafari, K ; Sharif University of Technology | 2021

489 Viewed
  1. Type of Document: Article
  2. DOI: 10.1007/s11709-021-0748-2
  3. Publisher: Higher Education Press Limited Company , 2021
  4. Abstract:
  5. Assessing the durability of concrete is of prime importance to provide an adequate service life and reduce the repairing cost of structures. Freeze-thaw is one such test that indicates the ability of concrete to last a long time without a significant loss in its performance. In this study, the freeze-thaw resistance of polymer concrete containing different polymer contents was explored and compared to various conventional cement concretes. Concretes’ fresh and hardened properties were assessed for their workability, air content, and compressive strength. The mass loss, length change, dynamic modulus of elasticity, and residual compressive strength were determined for all types of concretes subjected to freeze-thaw cycles according to ASTM C666-procedure A. Results showed that polymer concrete (PC) specimens prepared with higher dosages of polymer contents possessed better freeze-thaw durability compared to other specimens. This high durability performance of PCs is mainly due to their impermeable microstructures, absence of water in their structure, and the high bond strength between aggregates and a polymer binder. It is also indicated that the performance of high-strength concrete containing air-entraining admixture is comparable with PC having optimum polymer content in terms of residual compressive strength, dynamic modulus of elasticity, mass loss, and length change. © 2021, Higher Education Press
  6. Keywords:
  7. Chlorine containing polymers ; Compressive strength ; Concrete mixtures ; Durability ; Elastic moduli ; Freezing ; High performance concrete ; Microcomputers ; Thawing ; Air entraining admixtures ; Durability of concretes ; Dynamic modulus of elasticity ; Experimental investigations ; Freeze-thaw durability ; Fresh and hardened properties ; High strength concretes ; Residual compressive strength ; Polymer concrete
  8. Source: Frontiers of Structural and Civil Engineering ; Volume 15, Issue 4 , 2021 , Pages 1038-1046 ; 20952430 (ISSN)
  9. URL: https://link.springer.com/article/10.1007/s11709-021-0748-2