Genetic algorithm-based pore network extraction from micro-computed tomography images

Nejad Ebrahimi, A ; Sharif University of Technology | 2013

507 Viewed
  1. Type of Document: Article
  2. DOI: 10.1016/j.ces.2013.01.045
  3. Publisher: 2013
  4. Abstract:
  5. A genetic-based pore network extraction method from micro-computed tomography (micro-CT) images is proposed in this paper. Several variables such as the number, radius and location of pores, the coordination number, as well as the radius and length of the throats are used herein as the optimization parameters. Two approaches to generate the pore network structure are presented. Unlike previous algorithms, the presented approaches are directly based on minimizing the error between the extracted network and the real porous medium. This leads to the generation of more accurate results while reducing required computational memories. Two different objective functions are used in building the network. In the first approach, only the difference between the real micro-CT images of the porous medium and the sliced images from the generated network is selected as the objective function which is minimized via a genetic algorithm (GA). In order to further improve the structure and behavior of the generated network, making it more representative of the real porous medium, a second optimization has been used in which the contrast between the experimental and the predicted values of the network permeability is minimized via GA. We present two case studies for two different complex geological porous media, Clashach sandstone and Indiana limestone. We compare porosity and permeability predicted by the GA generated networks with experimental values and find an excellent match
  6. Keywords:
  7. Numerical analysis ; Optimization ; Permeability ; Petroleum ; Pore Network Model ; Porous media ; Computational memory ; Coordination number ; Experimental values ; Geological porous media ; In-buildings ; Indiana ; Micro computed tomography (micro-CT) ; Micro CT ; Microcomputed tomography ; Network permeability ; Objective functions ; Optimization parameter ; Pore networks ; Pore-network models ; Porous medium ; Second optimization ; Several variables ; Sliced images ; Two Approaches ; Crude oil ; Extraction ; Genetic algorithms ; Image matching ; Image processing ; Mechanical permeability ; Porous materials ; Computerized tomography
  8. Source: Chemical Engineering Science ; Volume 92 , 2013 , Pages 157-166 ; 00092509 (ISSN)
  9. URL: http://www.sciencedirect.com/science/article/pii/S0009250913000584