Loading...

# Determination of stress distribution around two Carbon Nonotubes embedded in infinite metal matrix using nonlocal theory of elasticity

## Niaki, S. A ; Sharif University of Technology

751
Viewed

- Type of Document: Article
- DOI: 10.4028/www.scientific.net/AMM.110-116.1696
- Abstract:
- Stress distribution in Carbon Nanotube (CNT) reinforced composites is studied using nonlocal theory of elasticity. Two nearby CNTs are modeled as two circular inclusions embedded in an infinite elastic medium, and classical stresses are obtained using the complex stress potential method. Nonlocal stresses are calculated using nonlocal integral elasticity equation. Effects of the distance between CNTs as well as effects of the nonlocal parameters on the stress distribution and stress concentration are studied. For unit normal stress at infinity, stress at the interface of the CNT and matrix increases from 0.1 for classical analysis to 0.85 for nonlocal analysis. Furthermore, when two CNTs approach to each other radial and hoop stresses across the interface increases. It is interesting that, results of the nonlocal and classical elasticity for the hoop stress are different completely
- Keywords:
- Circular inclusions ; Complex stress ; Elastic medium ; Elasticity equations ; Hoop stress ; Matrix ; Metal matrices ; Nonlocal ; Nonlocal elasticity ; Nonlocal theory ; Normal stress ; Reinforced composites ; Two circular inclusions ; Aerospace engineering ; Carbon ; Carbon nanotubes ; Elasticity ; Inclusions ; Nanocomposites ; Residual stresses ; Stress concentration ; Metallic matrix composites
- Source: Applied Mechanics and Materials, 29 July 2011 through 31 July 2011 ; Volume 110-116 , July , 2012 , Pages 1696-1700 ; 16609336 (ISSN) ; 9783037852620 (ISBN)
- URL: http://www.scientific.net/AMM.110-116.1696