Sharif Digital Repository / Sharif University of Technology
    • [Zoom In]
    • [Zoom Out]
  • Page 
     of  0
  • [Previous Page]
  • [Next Page]
  • [Fullscreen view]
  • [Close]
 

Numerical Solution of Two-dimensional Compressible Flow Using Immersed Boundary Method with Compact Finite Difference Scheme  

, M.Sc. Thesis Sharif University of Technology Mashayekh, Erfan (Author) ; Hejranfar, Kazem (Supervisor)
Abstract
In this study, the viscous compressible flow is simulated over two-dimensional geometries by using the immersed boundary method and applying a high-order accurate numerical scheme. A fourth-order compact finite-difference scheme is used to accurately discretize the spatial derivative terms of the governing equations and the time integration is performed by the fourth-order Runge–Kutta scheme. To regularize the numerical solution and eliminate spurious modes due to unresolved scales, nonlinearities and inaccuracies in implementing boundary conditions, high-order low-pass compact filters are applied. A uniform Cartesian grid that is not coincident with the body surface is used and the boundary... 

Cataloging brief

Numerical Solution of Two-dimensional Compressible Flow Using Immersed Boundary Method with Compact Finite Difference Scheme  

, M.Sc. Thesis Sharif University of Technology Mashayekh, Erfan (Author) ; Hejranfar, Kazem (Supervisor)
Abstract
In this study, the viscous compressible flow is simulated over two-dimensional geometries by using the immersed boundary method and applying a high-order accurate numerical scheme. A fourth-order compact finite-difference scheme is used to accurately discretize the spatial derivative terms of the governing equations and the time integration is performed by the fourth-order Runge–Kutta scheme. To regularize the numerical solution and eliminate spurious modes due to unresolved scales, nonlinearities and inaccuracies in implementing boundary conditions, high-order low-pass compact filters are applied. A uniform Cartesian grid that is not coincident with the body surface is used and the boundary... 

Find in content

sort by

Bookmark

Loading...