![]() |
Development of Characteristic Boundary Conditions with Artificial Compressibility Method by Compact Finite-Difference Discretization, Ph.D. Dissertation Sharif University of Technology ; Hejranfar, Kazem (Supervisor)
Abstract
In the present study, the preconditioned incompressible Navier‐Stokes equations with the artificial compressibility (AC) method formulated in the generalized curvilinear coordinates are numerically solved by using a high‐order compact finite‐difference scheme for accurately and efficiently computing the incompressible flows. A fourth‐order compact finite‐difference scheme is utilized to discretize the spatial derivative terms of the resulting system of equations and the time integration is carried out based on the dual time‐stepping method. The capability of the proposed solution methodology for computing the steady and unsteady incompressible viscous flows in a wide range of Reynolds...
Cataloging briefDevelopment of Characteristic Boundary Conditions with Artificial Compressibility Method by Compact Finite-Difference Discretization, Ph.D. Dissertation Sharif University of Technology ; Hejranfar, Kazem (Supervisor)
Abstract
In the present study, the preconditioned incompressible Navier‐Stokes equations with the artificial compressibility (AC) method formulated in the generalized curvilinear coordinates are numerically solved by using a high‐order compact finite‐difference scheme for accurately and efficiently computing the incompressible flows. A fourth‐order compact finite‐difference scheme is utilized to discretize the spatial derivative terms of the resulting system of equations and the time integration is carried out based on the dual time‐stepping method. The capability of the proposed solution methodology for computing the steady and unsteady incompressible viscous flows in a wide range of Reynolds...
Find in contentBookmark |
![]() |
|